Минимально допустимое сопротивление изоляции. Методика измерения сопротивления изоляции электрооборудования

Приступая к измерению сопротивления изоляции кабеля важно учесть температурные показатели окружающей среды. Почему так?

Это связано с тем, что при минусовой температуре в кабельной массе молекулы воды будут находиться в замерзшем состоянии, фактически в виде льда. А как известно лед является диэлектриком и не проводит ток.

Так что при определении сопротивления изоляции при минусовой температуры именно эти частички замерзшей воды не будут обнаружены.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника .

Приборы и средства измерения сопротивления изоляции кабеля.

Следующим пунктом при проведении измерения сопротивления изоляции кабельных линий, будут сами измерительные приборы.

Наиболее популярным прибором для измерения сопротивления изоляции у работников нашей электролаборатории является прибор MIC-2500.

С помощью этого прибора произведенного фирмой Sonel можно не только снять замеры показателей сопротивления кабельных линий, шнуров, проводов, электрооборудования (трансформаторы, выключатели, двигатели и т.п), но и определить замер уровня изношенности и уровня увлажненности изоляции.

Стоит отметить, что именно прибор MIC-2500 включен в государственный реестр разрешенных для измерения сопротивления изоляции.

Согласно инструкциям прибор MIC-2500 должен проходить ежегодную государственную поверку. После процедуры поверки на прибор наносят голограмму и штамп, которые подтверждают прохождение поверки. В штампе указывается информация о дате плановой поверки и серийный номер измерительного прибора.

К работе с измерениями сопротивления изоляции допускаются только исправные и поверенные приборы.

Нормы сопротивления изоляции для различных кабелей.

Для определения норма сопротивления изоляции кабелей , нужно провести их классификацию. Кабели по функциональному назначению разделяются на:

  • выше 1000 (В) - высоковольтные силовые
  • ниже 1000 (В) - низковольтные силовые
  • контрольные кабели - (цепи защиты и автоматики, вторичные цепи РУ, цепи управления, цепи питания электроприводов выключателей, отделителей, короткозамыкателей и т.п.)

Измерение сопротивления изоляции, как для высоковольтных кабелей, так и для низковольтных кабелей осуществляется мегаомметром на напряжение 2500 (В). А контрольные кабели измеряются при напряжении 500-2500 (В).

Каждый кабель имеет свои нормы сопротивления изоляции. Согласно ПТЭЭП и ПУЭ.

Высоковольтные силовые кабели выше 1000 (В) — сопротивление изоляции должно достигать показателя не ниже 10 (МОм)

Низковольтные силовые кабели ниже 1000 (В) — сопротивление изоляции не должно достигать отметки ниже 0,5 (МОм)

Контрольные кабели — сопротивление изоляции не должно опускаться ниже 1 (МОм)

Алгоритм измерения сопротивления изоляции высоковольтных силовых кабелей.

Чтобы понять и упростить процесс выполнения работ по измерению сопротивления изоляции в высоковольтных силовых кабелях , рекомендуем порядок действий при замерах.

1. Проверяем отсутствие напряжения на кабеле при помощи указателя высокого напряжения

2. Ставим испытательное заземление с использованием специальных зажимов ка кабельные жилы с той стороны, где будем проводить измерение.

3. На другой стороне кабеля оставляем свободные жилы, при этом разводим их на достаточное расстояние друг от друга.

4. Размещаем предупреждающие информационные плакаты. Желательно поставить на другой стороне человека для наблюдения за безопасностью во время измерения мегаомметром.


5. Каждую жилу измеряем 1 минуту мегаомметром на 2500 (В) для получения показателей сопротивления изоляции силового кабеля.

Например, замеряем сопротивление изоляции на жиле фазы «С». При этом помещаем заземление на жилы фаз «В» и «А». Один конец мегаомметра подключаем к заземлению, или проще сказать к «земле». Второй конец — к жиле фазы «С».

Наглядно это выглядит так:

6. Данные измерений в процессе работы записываем в блокнот.

Методика измерения сопротивления изоляции низковольтных силовых кабелей.

Что касается измерения изоляции низковольтных силовых кабелей , то методика измерения незначительно отличается от описанной выше.

Аналогично:

1. Проверяем отсутствие напряжения на кабеле с помощью защитных средств, предназначенных для работ в электроустановках.

2. С другой стороны кабеля, жилы разводим их на достаточное расстояние друг от друга и оставляем свободными.

3. Размещаем запрещающие и предупреждающие плакаты. Оставляем с другой стороны человека для наблюдения за безопасностью.

4. Измерение сопротивления изоляции низковольтного силового кабеля проводим мегаомметром на 2500 (В) по 1 минуте:

  • между фазными жилами (А-В, В-С, А-С)
  • между фазными жилами и нулем (А-N, В-N, С-N)
  • между фазными жилами и землей (А-РЕ, В-РЕ, С-РЕ), если кабель пятижильный
  • между нулем и землей (N-PE), предварительно отключив ноль от нулевой шинки

6. Полученные показатели измерений сопротивления изоляции фиксируем в блокноте.

Методика измерения сопротивления изоляции контрольных кабелей.


Особенностью измерения сопротивления изоляции контрольных кабелей является то, что жилы кабеля можно не отсоединять от схемы и делать замеры вместе с электрооборудованием.

Измерение сопротивления изоляции контрольного кабеля выполняется по уже знакомому алгоритму.

1. Проверяем отсутствие напряжения на кабеле с помощью защитных средств, которые предназначены для работ в электроустановках.

2. Измеряем сопротивления изоляции контрольного кабеля мегаомметром на 500-2500 (В) в такой последовательности.

Сначала совершаем подключение одного вывода мегаомметра к испытуемой жиле. Остальные жилы контрольного кабеля соединяем между собой и на землю. Ко второй выводу мегаомметра подключаем либо землю, либо любую другую не испытуемую жилу.

1 минуту производим замер испытуемой жилы. Потом эту жилу возвращаем к остальным жилам кабеля и поочередно измеряем каждую жилу.

3. Все полученные показатели измерения сопротивления изоляции контрольного кабеля фиксируем в блокнот.

Протокол измерения сопротивления изоляции кабеля.

Все вышеперечисленные электрические измерения, после получения данных сопротивления изоляции кабеля необходимо подвергнуть сравнительному анализу с требованиями и нормами ПУЭ и ПТЭЭП. На основании сравнения необходимо сформулировать вывод-заключение о пригодности кабеля к последующей эксплуатации и составить протокол измерения сопротивления изоляции.

МЕТОДИКА

измерениясопротивленияизоляции электрооборудования

многофункциональным электрическим тестером (тип МЭТ-5035)

1.ВВЕДЕНИЕ.

Измерение сопротивления изоляции постоянному току является наиболее распространенным видом контроля состояния изоляции. Сущность метода состоит в измерении отношения приложенного к изоляции постоянного напряженияU протекающему через неё ток i

R =

U

i

С учетом схемы замещения диэлектрика суммарный ток, протекающий через изоляцию

i=i скв +i абс +i о ,

i скв - ток сквозной проводимости;

i абс - ток абсорбции, обусловленный медленными процессами поляризации;

i о - ток. обусловленный процессами быстрой поляризации.

Поскольку токпротекает лишь в течение 10 –12 … 10 –14 с, то его влияние на результатах измерений не сказывается, тогда как величина абсорбционной составляющей iабс играет весьма существенную роль, т. е. в цепи измерения вплоть до завершения процессов поляризации диэлектрикабудет протекать ток, убывающий во времени со скоростью, зависящей от постояннойτ абс = R абс * C абс

Следовательно, измеренное значение сопротивления в этот период будет зависеть от длительности воздействия приложенного напряжения.

С увеличением времени от начала измерения до момента отсчета измеренное значение сопротивления увеличивается.

Для обеспечения единства измерений принято отсчет показаний приборов производить через 60 сек. после подачи на изоляцию измерительного напряжения.

2.НОРМЫ, ПЕРИОДИЧНОСТЬ ИПОГРЕШНОСТИИЗМЕРЕНИЯ

2.1. Согласно ПУЭ и ПТЭЭП:

2.1.1. Сопротивление изоляцииэлектропроводок и кабельныхлиний напряжениемдо 0,4 кВ. включительно должно быть не менее 0,5 мОм (табл. 1.8.39. ПУЭ, табл. 37прил. 3.1.ПТЭЭП).

2.1.2. Сопротивление изоляции распределительных устройств, щитов и токопроводов должно быть не менее 1 мОм (табл. 37 прил. 3.1. ПТЭЭП).

2.1.3. Сопротивление изоляции стационарныхэлектроплит должно быть не менее

1 мОм (табл. 37 прил. 3.1. ПТЭЭП).

2.1.4. Сопротивление изоляции кранов и лифтов должно быть не менее 0,5 мОм (табл. 37 прил. 3.1. ПТЭЭП).

2.1.5. Сопротивление изоляции электродного котла без водыдолжно быть не менее 0,5 мОм, если заводом-изготовителем не оговорены более высокие требования. (п. 25.4. прил. 3. ПТЭЭП).

2.1.6. Сопротивление изоляции обмоток статора у электродвигателей переменного тока на напряжение до 1000 В должно быть не менее 1 мОм при температуре 10…30 °С, а притемпературе 60 °С – 0,5 мОм (табл. 1.8.8. ПУЭ, п. 23.1.2. прил. 3. ПТЭЭП).

2.1.7. Сопротивление изоляции обмоток ротора у электродвигателей с фазным ротором на напряжение до 1000 В должно быть не менее 0,2 мОм (табл. 1.8.8. ПУЭ, п. 23.1.4. прил. 3. ПТЭЭП).

2.1.8. Сопротивление изоляции обмоток электрических машин постоянного тока на на-пряжение до 1000 В. зависит от температуры обмотки и наименьшее допустимое значение определяется по таблице 32приложения 3. ПТЭЭП.

2.1.9. Если в качестве защитной меры используются изолирующие помещения, в которых предотвращено одновременное прикосновение к частям, оказавшимся под разными потенциалами, при повреждении основной изоляции токоведущих частей сопротивлениеизолирующегополаистен в таких помещениях, относительнолокальной земли должнобытьнениже (п. 1.7.86. ПУЭ):

50кОмприноминальномнапряженииэлектроустановкиневыше500 В;

100 кОмприноминальномнапряженииэлектроустановкивыше500 В.

2.2. Измерение сопротивления изоляции производится в течение 1 минуты мегаомметром на напряжение:

Силовых кабельных линий напряжением до 1 кВ. -2500 В,

Распределительных устройств, щитов и токопроводов- 1000…2500 В,

Электродных котлов – 2500 В,

Электропроводок, кранов и лифтов -1000 В.

Электродвигателей и машин постоянного тока до500 В – 500 В,

Изолирующих полов при номинальном напряжениидо 500 В включительно- 500 В,

Изолирующих полов при номинальном напряженииболее 500 В– 1000 В.

2.3. В случае, если сопротивление изоляции силовых и осветительных электропроводок оказалось ниже 1 мОм, производится испытание повышенным напряжением промышленной частоты 1000 В в течение 1 мин. (п.28.3.2. прил.3. ПТЭЭП), которое можно заменить на испытание мегаомметром напряжением 2500 В (п. 3.6.22. ПТЭЭП).

2.4.Измерениесопротивленияизоляцииэлектропроводок, в том числе и осветительных сетей,производитсянереже1разав3года,адля электропроводокв особо опасных помещениях и наружныхустановках стационарных,электроплит, кранови лифтов -нереже1разавгод (табл. 37 прил. 3.1ПТЭЭП).

Испытания электродных котлов, электродвигателей переменного тока и электрических машин до 1000 В производится в сроки, устанавливаемые системой ППР.

2.5.Методикавыполненияизмеренийобеспечиваетпогрешностьнеболее

+ 0,05%отдлинышкалыприизмеренииприбором МЭТ 5035

3.МЕТОДИЗМЕРЕНИЙ

3.1.Измерение сопротивленияизоляции производится мегаомметром.

Мегаомметр состоит из генератора постоянного тока или генератора переменного тока с выпрямителем, логометра и добавочного сопротивленияR1, предназначенного для защиты прибора при пробое изоляции. Генератор вращается от руки или с помощью преобразователя

и выдает на зажимах напряжение, величина которого соответствует номинальному напряжению мегаомметра. Ток, протекающий через прибор, является обратно пропорциональным величине измеряемого сопротивления Rx, поэтому шкала прибора градуируется непосредственно в мегаомах. В мегаомметрах чаще всего используется логометр, у которого неравномерность вращения генератора практически не сказывается на показаниях прибора. Это объясняется тем, что роль противодействующей пружины в логометрах игпает параллельная обмотка, включенная на выходное напряжение генератора через резистор R2.

При измерении малых сопротивлений напряжение, приложенное к измеряемой изоляции, может оказаться значительно ниже номинального значения.

3.2.Для измерения сопротивления изолирующего пола используется квадратная металлическая пластина со стороной 250 мм.Между металлической пластиной и измеряемой поверхностью помещают влажную материю. Пластину прижимают к поверхности пола или стены с усилием 25 кГ. Сопротивление изоляции измеряют между измерительной пластиной и защитным проводником электроустановки.

4.ТРЕБОВАНИЯБЕЗОПАСНОСТИ

4.1.Перед началом испытаний необходимо убедиться в отсутствии людей, работающих на той части электроустановки, к которой присоединён испытательный прибор и, если нужно, выставить наблюдающего.

4.2.Место испытания, а также соединительные провода, которые при испытании находятся под испытательным напряжением, ограждаются.

4.3.На ограждениях и оборудовании вывешивается плакат “Испытание. Опасно дляжизни”

4.4.После окончания испытания необходимо снять остаточный заряд с проверяемого оборудования посредством его кратковременного (около 1 мин.) заземления.

4.5.Соединительные провода должны иметь стандартные оконцеватели и сопротивление изоляции не менее 10 мОм.

4.6. При измерении изоляции пола и стен в зоне измерения находиться в диэлектрических галошах или ботах. Прижим пластины к стене производится в диэлектрических перчатках.
5.ТРЕБОВАНИЯККВАЛИФИКАЦИИПЕРСОНАЛА

5.1.Испытания производятся бригадой в составе не менее двух человек, изкоторых производитель работ должен иметь группу по электробезопасности не ниже IV , а остальные - не ниже III .

5.2.Испытания может проводить персонал, прошедший специальную подготовку и имеющий в удостоверении по ПБ отметку о допуске к проведению испытаний.

5.3.В состав бригады, проводящей испытания, могут быть включены лица из ремонтного персонала с группой по электробезопасности II для выполнения подготовительных работ, наблюдения, а также для разъединения и соединения шин.

6.УСЛОВИЯИЗМЕРЕНИЙ

6.1.Измерениесопротивленияизоляциидолжнопроизводиться:

Междутоковедущимипроводниками,взятымипоочереди;

Междукаждымтоковедущимпроводникоми“землёй”.

(п.612.3ГОСТР 50571.16-99)

6.2.Измерениядолжныпроизводитьсяприотсоединённыхэлектроприборах,снятыхпредохранителях.

6.3. Приизмерениисопротивленияизоляциивосветительныхцепяхлампы должныбытьвывинчены,авыключателивключены.

Внимание Нормазаменыиспытаниябездемонтажалампнаизмерениетоков короткогозамыканияизПТЭЭПисключена!

6.4.Приизмеренииизоляцииполовистендолжнобытьсделано3измерения (п.612.5 ГОСТР 50571.16-99).Одноизизмеренийдолжнобытьвыполненопримернов 1 м отстороннихпроводящихчастей.

6.5.Сопротивлениеизоляцииполов,стенизмеряется донанесениянаиспытываемыеповерхностипокрытий (лак,краскаит.п.).

6.6.Для котловсопротивление изоляции измеряется в положении электродов при максимальной и минимальной мощности.

6.7.Обмотки электродвигателя, соединенные между собой наглухо и не имеющие вывода концов каждой фазы или ветви, должны испытываться относительно корпуса без разъединения(п. 3.6.17. ПТЭЭП).

6.8.В эксплуатации сопротивление изоляции обмоток электрических машин постоянного токаизмеряется вместе с соединенными с ними цепями и кабелями(п. 24.2.1. прил.3. ПТЭЭП).

6.9.Сопротивление изоляции электроплит производится при их нагретом состоянии.

Любое электротехническое изделие характеризуется целым рядом параметров. Для кабелей одним из основных является сопротивление изоляции. Существуют определенные нормы, которые обязательно учитываются при проектировании и монтаже, а также в процессе эксплуатации и проведения ТО трасс коммуникаций.

Каковы они нормы сопротивления изоляции кабеля? Дело в том, что по данному вопросу нередко встречаются разночтения. Это вызвано, по мнению автора, несколькими факторами.

Во-первых, кабель – понятие обобщенное. К этой группе изделий относятся образцы, используемые при прокладке линий силовых, сигнальных и телефонных. Кабеля могут быть коаксиальными (радиочастотными), контрольными, распределительными и общего назначения. То есть вариантов конструктивного исполнения защитных оболочек, отличающихся, в том числе, и толщиной, множество.

Во-вторых, на изготовление изоляции идут самые разные материалы – резина, пластики, даже пропитанная особым образом бумага. Хотя в более современных кабелях защита, как правило, комплексная, то есть сочетающая различные диэлектрические слои.

В-третьих, о сопротивлении какой изоляции идет речь – внешней оболочки или поверхностного покрытия жил?


В-четвертых, следует принимать во внимание и специфику монтажа и дальнейшей эксплуатации конкретного кабеля. Например, способ прокладки трассы – открытый или закрытый. Где она укладывается – в грунте, в лотках (вариантов достаточно). Чем характеризуется окружающая среда – предельная величина и перепады температуры, влажности, агрессивность и так далее.

Сопротивление изоляции – нормы для кабелей

Все значения – в МОм.

Кабеля силовые

  • Высоковольтные (более 1 000 В). Для них нормы не существует. То есть, чем сопротивление изоляции выше, тем лучше. Принято считать, что его значение не должно быть менее 10.
  • Низковольтные (до 1 000 В). По сути, речь идет об электропроводках и вторичных цепях различных установок. Минимальный предел значения сопротивления изоляции – 0,5. Более подробную информацию по данному вопросу можно найти в ПУЭ 7-ой редакции (табл. 1.8.34 и п. 1.8.37).


Кабеля контрольные, сигнальные, общего назначения

Это довольно большая группа изделий. К ней можно отнести кабеля, монтируемые для цепей управления, автоматики, питания эл/приводов, подключения защитных, распределительных устройств и так далее. Для них нормой считается, если сопротивление изоляции не ниже 1. Но это общепринятый показатель. Точное значение, в зависимости от , следует искать в его сопроводительной документации.

Для кабелей связи нормы сопротивления несколько иные, более «жесткие». Для линий городских н/ч – не менее 5, магистральных – 10 (МОм/км).

Если кабель имеет наружную оболочку из алюминия с покрытием из ПВХ, то норма сопротивления выше и равняется 20.

Примечание. ПУЭ оговаривает, что измерение сопротивления изоляции проводится мегаомметром с напряжением индуктора:

  • для кабелей в цепях не более 500 В – 500;
  • до 1 000 В – 1 000;
  • все остальные – 2 500.

Специалистам не нужно объяснять, что все требования к сопротивлению изоляции указываются в технических заданиях, ГОСТ и СНиП на определенный вид работы. Его величину несложно узнать по паспорту кабеля, а при необходимости контроля состояния изделия произвести соответствующее измерение. Специфика этой операции оговорена в п. 1.8.7. ПУЭ (7-я редакция).

В быту для оценки степени износа изоляции силового кабеля можно воспользоваться следующей таблицей, которая отражает ориентировочные усредненные нормы.


Так как непрофессионал не в состоянии учесть всех нюансов конструктивного исполнения изделия и его использования, этого, как правило, вполне достаточно, чтобы понять, стоит ли закладывать данный образец или он уже непригоден к эксплуатации. То есть отбраковать. Ну а если есть определенные сомнения, то нелишне проконсультироваться с профильным специалистом.