Получение алюминия. Металлургия алюминия - Борисоглебский Ю.В Получение алюминия электролизом

Алюминий - один из наиболее молодых промышленных металлов. Малый удельный вес, стойкость против окисления, способность образовывать сплавы со многими другими металлами, легкая обрабатываемость, высокая механическая прочность и антикоррозионная стойкость сделали алюминий одним из наиболее прогрессивных металлов. К середине XX в. алюминий по производству и использованию занял второе место (после железа).
Рост производства алюминия опережает рост производства железа, меди, свинца, цинка и даже рост населения земли, общей промышленной продукции и прирост электрической мощности.
За двадцать лет (с 1937 по 1957 гг.) в капиталистических странах выпуск алюминия увеличился с 444 тыс. т до 2730 тыс. т, или более чем в 6 раз, в то время как производство стали за это время повысилось менее чем в два раза, мели на 37%, свинца на 10% и цинка на 68%. Динамика производства алюминия в капиталистических странах характеризуется следующими показателями количественного роста тыс. T металла:

Основные производители алюминия в капиталистическом мире - США, Канада, Франция, Западная Германия, Норвегия, Япония, Италия. Ниже приведены данные о производстве алюминия в капиталистических странах, тыс. т:

Рост производства алюминия в капиталистических странах, и в первую очередь в США, Канаде и Франции, стал возможным после того, как была осуществлена большая программа строительства крупных глиноземных и алюминиевых заводов, созданы источники дешевой электроэнергии, а алюминий нашел применение во многих отраслях хозяйства.
Производство алюминия обычно создается вблизи источников дешевой электроэнергии, удельный вес которой составляет около 15% всей стоимости алюминия. Экономия средств на электроэнергию обычно превышает в несколько раз транспортные расходы на доставку богатого алюминием сырья на заводы даже из весьма удаленных пунктов его добычи. Развитие алюминиевой промышленности шло по пути создания очень крупных глиноземных и алюминиевых заводов при значительной концентрации производства, особенно в США и Канаде.
При общей мощности алюминиевых заводов капиталистических стран на 1 января 1958 г. 3300 тыс. т мощность заводов США достигает 1670 тыс. т, в том числе компании «Алкоа» (Алюминиум Компани оф Америка)-719,0, «Рейколдэ Металз Компани» - 443,3, «Кайзер Алюминиум энд Кемикл Корп.» - 451,8 и «Анаконда Алюминиум Компани» - 54,4 тыс. г, а мощность заводов Канады - более 740 тыс. т, в том числе компании «Алюминиум компани оф Канада» - 703,9 тыс. т. в год.
Имеются сообщения о программе дальнейшего строительства и расширения заводов. К 1961 г. в США намечается ввести в эксплуатацию около 700 тыс. T новых мощностей по производству алюминия; в Канаде - 120 тыс. т.
В Европе алюминиевая промышленность получила развитие во Франции, Норвегии, Италии и ФРГ. В этих странах также намечено строительство новых алюминиевых заводов.
Алюминиевые заводы США и Канады по мощности можно распределить следующим образом:

Мощность европейских заводов ниже: из 36 алюминиевых заводов в капиталистических странах только 6 имеют мощность от 30 до 60 тыс. т.
США, производство алюминия в которых составляет более 54% общего производства алюминия в капиталистических странах, добывают лишь 3% бокситов из общей добычи их. Основные месторождения бокситов находятся на островах Караибского моря, в Южной Америке, Африке и Австралии. Всего в странах капиталистического мира добывается 15-17 млн. T бокситов в год. Главные источники бокситов - Голландская Гвиана (3,5 млн. т) и Ямайка (3,1 млн. т). В Европе первое место по добыче занимает Франция (1,5 млн. т.), расширяется добыча высококачественных бокситов в Греции.
Лом и скрап - важные источники сырья для производства вторичного алюминия. Доля вторичного алюминиевого сырья составляет в общем потреблении алюминия в США 22-25%. в Англии 30-32%, в ФРГ - более 30% и во Франции 24-26%.
В США при производстве в 1956 г. 1523 тыс. т первичного алюминия выпуск вторичного составил 320 тыс. т. В ФРГ в 1957 г. при производстве первичного алюминия 154 тыс. т вторичного алюминия было выплавлено 88 тыс. т.
Общее количество потребляемых в капиталистических странах вторичных алюминиевых материалов превысило полмиллиона тонн.
Разнообразие свойств алюминия и сплавов из него обусловили широкое его применение в различных областях промышленного производства и строительства, а также в быту. Алюминий используется при изготовлении более 500 тысяч различных изделий современной промышленности.
Потребление алюминия ведущими капиталистическими странами особенно возросло в годы второй мировой войны и в послевоенные годы. Если до второй мировой войны потребление алюминия увеличивалось вдвое через каждые 10 лет, то за последние годы оно увеличивается вдвое через каждые пять лет.
К 1957 г. потребление алюминия в капиталистических странах превысило 2600 тыс. T и достигло в США 1610 тыс. т, в Англии 216 тыс. т, во Франции 152 тыс. т, в Японии 71 тыс. г и в ФРГ 206 тыс. т
Развитие производства алюминия непосредственно связано с развитием авиации, так как алюминий является главным материалом в самолетостроении. Производственные мощности алюминиевых заводов и создание стратегических запасов алюминия определяют во многом военную мощь страны. В последние годы США выделяют субсидии на строительство новых заводов и одновременно производят большие закупки алюминия для стратегических запасов. Только за период 1953-1955 гг. стратегические запасы алюминия в США достигли примерно 450 тыс. т.
Алюминий и алюминиевые сплавы находят широкое применение в авиации потому, что удельный вес алюминия (2,65-3) в 2,5-3 раза меньше удельного веса стали и медных сплавов. Кроме того, прочность алюминия и его сплавов достаточно высокая.
Алюминий необходим также и для танкостроения, артиллерии, производства средств связи, взрывчатых веществ, осветительных и зажигательных снарядов. Применение алюминия для деталей военных судов снижает их водоизмещение при сохранении боевых качеств. Большое значение приобретает алюминий и в снаряжении армии.
Электротехническая промышленность - следующая за военной отрасль промышленности по расходу алюминия. Алюминий по электропроводности значительно превосходит другие металлы, уступая лишь серебру и меди. При поперечном сечении, обеспечивающем одну и ту же проводимость, вес алюминиевых проводов вдвое меньше медных. Провода и кабели из алюминия распространены в Европе в большей степени, чем в США. Применяют высокопрочные сплавы алюминия с магнием, кремнием и кадмием. Содержание этих элементов таково, что заметно не снижается электропроводность сплавов. Наиболее известны сплавы: альдрей (ФРГ), альмелек (Франция) и сильмалек (Англия).
Электропромышленность России непрерывно увеличивает спрос на алюминий. Только в производстве кабельной продукции удельный расход от общего потребления алюминия возрос с 1950 по 1958 гг. в два с половиной раза. Ленинская программа сплошной электрификации страны может быть осуществлена только при широком внедрении в электротехнику алюминия. Больших успехов добились в этом и другие социалистические страны (особенно Чехия и Германия).
Механические и физические свойства алюминия и его сплавов, особенно легкость и большая теплопроводность, предопределили их широкое применение в машиностроении и моторостроении. Способность алюминия образовывать различные сплавы с другими металлами дает возможность подобрать необходимый материал для различных условий его применения.
Алюминий и особенно его сплавы при литье дают хорошую поверхность. высокую точность размеров и минимальный вес. Производственный процесс изготовления деталей разрешает конструкторам проектировать наивыгоднейшую и даже очень сложную форму деталей при высокой прочности и минимальном расходе металла. Легирование алюминия магнием порядка 0,7%, кремнием и медью повышает его прочность. Для отливки корпусов моторов, коробок скоростей, поршней и других деталей автомобилей алюминий применяется в виде сплава, называемого силумином.
В автомобильной промышленности применение алюминия постоянно расширяется. В США на изготовление одной автомашины Кадилак Эльдорадо расходуется до 86,9 кг алюминия. Более высокий расход его в автостроении европейских стран: от 30 до 130 кг на одну машину. Технические и экономические обоснования показывают рациональность повышения расхода до 195 кг. Ha одну машину. Компания «Дженерал Моторе» заявила о выпуске трех экспериментальных двигателей, выполненных целиком из алюминия и его сплавов.
Применение алюминиевых сплавов при изготовлении железнодорожных вагонов и локомотивов позволяет уменьшить вес вагона на 50% и вес тепловоза на 4-5 т.
В химическом машиностроении используется высокая антикоррозионная стойкость алюминия. Из алюминия изготовляется аппаратура и тара для транспортировки азотной кислоты. Для повышения антикоррозионной стойкости алюминий легируют марганцем.
Алюминий применяется в металлургии для раскисления стали и для сварки железных и стальных изделий, а также находит широкое применение и в консервной промышленности для изготовления всевозможной тары: из алюминия изготовляется тара для молока, пива и других жидкостей.
В последние годы в развитых капиталистических странах резко расширилось применение алюминия для конструктивных элементов промышленного и жилищного строительства, особенно в США: количество алюминия, примененного в строительстве жилых и гражданских сооружений, увеличилось с 220 тыс. г в 1952 г. до 400 тыс. т в 1955 г. и более 500 тыс. т в 1957 г., что составило почти четвертую часть всего потребления в стране металла.
В США почти 20%) всего расходуемого в строительстве алюминия идет на изготовление оконных рам. Алюминиевым конструкциям отдается предпочтение в тех случаях, когда достигается технический эффект от снижения веса, а не от простой замены стальных конструкций алюминиевыми. Так, в Англии были построены из алюминия два ангара и выставочное здание. Вес ангара, построенного в Хетфильде, в семь раз меньше веса ангара из стальных конструкций. Применяя алюминий, можно строить мосты с большими пролетами. Широко применяется алюминий для изготовления легких передвижных конструкций, кранов, стрел, драг и деталей экскаваторов.
Имеются сведения о том, что США расходуют свыше 100 тыс. т алюминиевых гофрированных листов при строительстве складов, промышленных зданий и сельскохозяйственных строений. Компания «Рейнольд металле» разрабатывает проект постройки домов, в которых будут широко использованы алюминиевые сплавы. Применяются также и крупные блоки из алюминиевых сплавов для стен высотных зданий: вес такого блока в 4-4,5 раза меньше веса каменной кладки такого же объема. В Англии более 40 компаний занимаются производством сборных алюминиевых домиков на экспорт. Алюминию, безусловно, принадлежит большое будущее в строительстве.
Нанося распыленный алюминий на стальные конструкции, получают прочное защитное от коррозии покрытие. Анодированный алюминий служит как облицовочный материал для архитектурных деталей.
Усиливается использование алюминия как тары и упаковочного материала. Так, в 1957 г. в США потребление алюминиевой фольги составило 98,1 тыс. T против 38 тыс. т в 1950 г.
Характеристика структуры потребления алюминия в развитых капиталистических приведена ниже, % от общего потребления в странах стране:

Основное количество алюминия потребляется в виде полуфабрикатов из алюминия и его сплавов. В США в течение длительного периода времени потребление алюминия в полуфабрикатах, обработанных давлением, составляло 75-80%, а литье 20-25%. Для других стран характерны другие соотношения. Так, в ФРГ расходуется в полуфабрикатах, обработанных давлением, 60-65% алюминия, для литья - около 30% и 5% для нужд сталелитейной промышленности.
Для получения литейных сплавов в основном используются вторичные металлы. В общем производстве литейных сплавов они занимают в Англии 80%. в США 75%, в Швейцарии 60% и во Франции 50%, причем эти сплавы по качеству не уступают первичным алюминиевым сплавам того же состава.
Полуфабрикаты, изготовленные обработкой давлением, исключительно разнообразны по форме и размерам. Важнейшие виды алюминиевого проката в США представлены ниже, тыс. т:

Современный период промышленного развития знаменуется все возрастающей ролью алюминия в технике и в производстве; его значение настолько велико, а применение стало настолько обширным, что в технической литературе не без основания называют алюминий металлом XX в.
Алюминий в самых различных областях выступает как основной заменитель железа, меди, свинца и цинка.
Как заменитель стали он уже занял заметное место в машиностроении, особенно в производстве автомобилей, в строительстве, особенно в передвижных конструкциях и в сооружениях с большими пролетами.
Так, в США в 1939 г. в среднем на один автомобиль шло 2,5 кг алюминия, в 1952 г. - 6,8 кг. а в 1957 г - 18,4 кг. В настоящее время на каждый автомобиль расходуется 23,5 кг алюминия - в основном на автоматические трансмиссии и мотор.
Дальнейшее расширение производства алюминия и снижение его стоимости увеличивают возможность использовать алюминий как заменитель железа.
Алюминий как заменитель меди применяется в электротехнике для изготовления кабелей и проводов, мелких электромоторов и трансформаторов малой мощности, конденсаторов, арматуры и осветительных приборов. Применять алюминий в электротехнике начали более 50 лет назад, но только в последние годы в этой области был достигнут значительный прогресс и алюминий стали применять вместо меди в широких масштабах.
Фирма «Алюминиум компани оф Канада Лимитед» построила в 1957 г. завод непрерывного анодирования алюминиевой проволоки.
Пленка окиси алюминия имеет высокую диэлектрическую постоянную и химически инертна; температура ее плавления намного превосходит температуру плавления находящегося под ней алюминия. Пленка очень твердая, но пористая, обладает хорошей адгезией к алюминию и высокой устойчивостью к абразивному износу. Толщина пленки менее 0,013 мм (0,0005 дюйма), следовательно, она занимает очень мало места в обмотке Поэтому можно использовать алюминиевую проволоку большего сечения, чтобы получать такие плотности тока, как и в случае медной проволоки. Тонкий оксидный слой обеспечивает хороший теплоотвод от обмотки; важным преимуществом оксидной изоляции является ее малый вес.
Алюминий как заменитель свинца используется для изготовления оболочек кабелей и будет использоваться до тех пор, пока его не заменят пластическими массами.
Как заменитель цинка алюминий найдет применение в изготовлении кровельного материала вместо оцинкованного листа.
Алюминий значительно вытеснит олово, расходуемое в виде белой жести на изготовление консервных банок. Наметившиеся пути замены алюминием других цветных металлов объясняются рядом его технико-экономических преимуществ.
Запасы меди, свинца и цинка по сравнению с запасами алюминия незначительны, поэтому производство этих металлов менее обеспечено надежными месторождениями, чем производство алюминия. Первоначальные затраты на организацию производства алюминия значительно меньше затрат на организацию производства меди, свинца, олова и других металлов.
Алюминий уже сейчас дешевле других цветных металлов; по мере расширения объема и совершенствования техники производства стоимость его будет снижаться в результате усовершенствований процессов получения глинозема и существенных изменений в оборудовании электролитных заводов.
Имеются многочисленные сообщения о перспективе роста производства алюминия в капиталистических странах и о том, что рост потребления алюминия наибольший в сравнении с другими металлами. Высказано предположение, что к 1965 г. суммарная мощность алюминиевой промышленности капиталистических стран достигнет примерно 4,5 млн. т, в том числе США и Канады 3,4 млн. т.
Комиссия Пэйли по обеспечению США сырьевыми материалами на 1950-1975 гг. предполагала, что потребление первичного алюминия в 1975 г. составит в США 3300 тыс. г, а в остальных капиталистических странах 2200 тыс. т, общее потребление 5500 тыс. т. Форма «Рейнолдз металз компани» полагает, что к 1975 г. потребность США в алюминии возрастет в 5 раз; с 1,8 млн. г до 9 млн. т.
Эти оценки развития алюминиевой промышленности правильно отражают тенденции к расширению сфер применения алюминия. Однако здесь не учитывается капиталистический характер производства и, следовательно, возможные неожиданные колебания в производстве и потреблении алюминия.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Магнитогорский Государственный Технический Университет

им. Носова

Кафедра металлургии черных металлов

Реферат по дисциплине «История металлургии»

МЕТАЛЛУРГИЯ АЛЮМИНИЯ


Аннотация

Рассмотрена тема "Металлургия алюминия", описаны основные свойства этого металла. Кратко изложена история открытия алюминия, возможные способы его получения и применения в различных отраслях промышленности.


Введение

1. Свойства алюминия

2. Применение алюминия

3. Сырые материалы

4. Производство глинозема

5. Электролитическое получение алюминия

6. Рафинирование алюминия

Заключение

Список использованной литературы


Введение

Слово «металлургия» происходит от греч.:

metalleuо – выкапываю, добываю из земли;

metallurgeo – добываю руду, обрабатываю металлы;

metallon – рудник, металл.

Это слово означает область науки и техники, охватывающую процессы обработки добытых из недр руд, получение металлов и сплавов, придание им определенных свойств.

В древности, в средние века и сравнительно недавно, вплоть до времени М.В.Ломоносова, считалось, что существует 7 металлов (золото, серебро, медь, олово, свинец, железо, ртуть).

В 1814 г. шведский химик Й.Берцелиус предложил использовать буквенные знаки, которыми пользуется весь мир, за редкими исключениями.

Сегодня науке известно более 80 металлов, большинство из них используется в технике.

В мировой практике сложилось деление металлов на черные (железо и сплавы на его основе) и все остальные – нечерные (Non-ferrousmetals, англ.; Nichtei-senmetalle, нем.) или цветные металлы. Металлургия часто подразделяется на черную и цветную. В настоящее время на долю черных металлов приходится около 95% всей производимой в мире металлопродукции.

В технике принята также условная классификация, по которой цветные металлы разделены на «легкие» (алюминий, магний), «тяжелые» (медь, свинец и др.), тугоплавкие (вольфрам, молибден и др.), благородные (золото, платина и др.), редкие металлы.

Доля продукции, изготовленной с использованием черных и цветных металлов, в настоящее время составляет 72-74% валового национального продукта государства. Можно утверждать, что металлы в XXI в. останутся основным конструкционными материалами, так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения.

Из ~ 800 млн. т потребляемых металлов ~ 750 млн. т – сталь, 20-22 млн. т – алюминий, 8-10 млн. т – медь, 5-6 млн. т – цинк, 4-5 млн. т – свинец (остальные - < 1 млн. т).

Из наиболее ценных и важных для современной техники металлов лишь немногие содержится в земной коре в больших количествах: алюминий (8,8%), железо (4,65%), магний (2,1%), титан (0,63%).

К рудным месторождениям легких металлов обычно относят руды, содержащие алюминий; основной поставщик алюминия – бокситы, а также алуниты, нефелины и раз личные глины. К рудным месторождениям цветных металлов относятся месторождения меди, свинца и цинка, кобальта, никеля, сурьмы. Запасы металлов в наиболее крупных из них достигают от десятков до сотен млн. т, при обычном содержании металлов в руде – единицы процентов.

Масса добываемых материалов во много раз превышает количество содержащихся в руде металлов и в подавляющем большинстве случаев из природных руд экономически невыгодно непосредственно извлекать полезные компоненты.

Археологические раскопки свидетельствуют о том, что знакомство человека с металлами относится к временам, весьма удаленным от нас. Считается, что первые изделия из бронзы получены за 3 тыс. лет до н.э восстановительной плавкой смеси медной и оловянной руд с древесным углем. Значительно позже бронзы стали изготовлять добавкой в медь олова и других металлов (алюминиевые, бериллиевые, кремненикелевые и др.). В настоящее время наиболее распространены алюминиевые бронзы (5-12% Al) с добавками железа, марганца и никеля.

В настоящее время металлургическое производство является одним из приоритетных отраслей народного хозяйства.


1. СВОЙСТВА АЛЮМИНИЯ

Алюминий был впервые получен датским физиком Х.Эрстедом в 1825 г. Название этого элемента происходит от латинского алюмен, так в древности назывались квасцы, которые использовали для крашения тканей.

Алюминий обладает многими ценными свойствами: небольшой плотностью – около 2,7г/см 3 , высокой теплопроводностью – около 300 Вт/(м. К) и высокой электропроводностью 13,8 . 10 7 Ом/м, хорошей пластичностью и достаточной механической прочностью.

Алюминий образует сплавы со многими элементами. В расплавленном состоянии алюминий жидкотекуч и хорошо заполняет формы, в твердом виде он хорошо деформируется и легко поддается резанию, пайке и сварке.

Сродство алюминия к кислороду очень большое. При его окислении выделяетсябольшое количество тепла (~ 1670000 Дж/моль). Тонкоизмельченный алюминий при нагревании воспламеняется и сгорает на воздухе. Алюминий соединяется с кислородом воздуха и в атмосферных условиях. При этом алюминий покрывается тонкой (толщиной ~ 0,0002 мм) плотной пленкой окиси алюминия, защищающей его от дальнейшего окисления; поэтому алюминий стоек против коррозии. Поверхность алюминия хорошо защищает от окисления этой пленки и в расплавленном состоянии.

Из сплавов алюминия наибольшее значение имеют дюралюминий и силумины.

В состав дюралюминия, кроме алюминия, входят 3,4-4% Cu, 0,5% Mn и 0,5%Mg, допускается не более 0,8% Fe и 0,8% Si. Дюралюминий хорошо деформируется и по своим механическим свойствам близок к некоторым сортам стали, хотя он в 2,7 раза легче стали (плотность дюралюминия 2,85 г/см 3).

Механические свойства этого сплава повышаются после термической обработке и деформации в холодном состоянии. Сопротивление на разрыв повышается со 147-216 МПа до 353-412 МПа, а твердость по Бринеллю с 490-588 до 880-980 МПа. При этом относительное удлинение сплава почти не изменяется и остается достаточно высоким (18-24%).

Силумины – литейные сплавы алюминия с кремнием. Они обладают хорошими литейными качествами и механическими свойствами.

2. ПРИМЕНЕНИЕ АЛЮМИНИЯ

Алюминий и сплавы широко применяют во многих отраслях промышленности, в том числе в авиации, транспорте, металлургии, пищевой промышленности и др. Из алюминия и его сплавов изготовляют корпуса самолетов, моторы, блоки цилиндров, коробки передач, насосы и другие детали в авиационной, автомобильной и тракторной промышленности, сосуды для хранения химических продуктов. Алюминий широко применяют в быту, пищевой промышленности, в ядерной энергетики и космических кораблей изготовлены из алюминия и его сплавов.

Вследствие большого химического сродства алюминия к кислороду его применяют в металлургии как раскислитель, а также для получения при использовании так называемого алюминотермического процесса трудно восстанавливаемых металлов (кальция, лития и др.).

По общему производству металла в мире алюминий занимает второе место после железа. ,

3. СЫРЫЕ МАТЕРИАЛЫ

Основным современным способом производства алюминия является электролитический способ, состоящий из двух стадий. Первая – это получение глинозема (Al 2 O 3) из рудного сырья и вторая – получение жидкого алюминия из глинозема путем электролиза.

Руды алюминия. Вследствие высокой химической активности алюминий встречается в природе только в связанном виде: корунд Al 2 O 3 , гиббсит Al 2 O 3 . 3H 2 O, бемит Al 2 O 3 . H 2 O, кианит 3Al 2 O 3 , 2SiO 2 , нефелин (Na, K) 2 O . Al 2 O 3 . 2SiO 2 , каолинит Al 2 O 3 , 2SiO 2 . 2H 2 Oи другие. Основными используемыми в настоящее время алюминиевыми рудами являются бокситы, а также нефелины и алуниты.

Бокситы. Алюминий в бокситах находится главным образом в виде гидроксидов алюминия (гиббсита, бемита и др.), корунда и каолинта. Химический состав бокситов довольно сложен. Они часто содержат более 40 химических элементов. Содержание глинозема в них составляет 35-60%, кремнезема 2-20%, оксида Fe 2 O 3 2-40%, окиси титана 0,01-10%. Важной характеристикой бокситов является отношение содержаний в них Al 2 O 3 к SiO 2 по массе – так называемый кремневый модуль.

К числу крупных месторождений бокситов в нашей стране относится Тихвинское (Ленинградская область), Североуральское (Свердловская область), Южноуральское (Челябинская область), Тургайское и Краснооктябрьское (Кустанайская область).

Нефелины входят в состав нефелиновых сиенитов и уртитов. Большое месторождение уртитов находится на Кольском полуострове. Основные компоненты уртита – нефелин и апатит 3Ca 3 (PO 4) 2 . CaF 2 . Их подвергают флотационному обогащению с выделением нефелинового апатитового концентратов. Апатитовый концентрат идет для приго товления фосфорных удобрений, а нефелиновый – для получения глинозема. Нефелиновый концентрат содержит, %: 20-30 Al 2 O 3 , 42-44 SiO 2 , 13-14 Na 2 O, 6-7 K 2 O, 3-4 Fe 2 O 3 и 2-3 CaO.

Алуниты представляют собой основной сульфат алюминия и калия (или натрия) K 2 SO 4 . Al 2 (SO 4) 3 . 4 Al(OH) 3 . Содержание Al 2 O 3 в них невысокое (20-22%), но в них находится другие ценные составляющие: серный ангидрид SO 3 (~ 20%) и щелочь Na 2 O , K 2 O (4-5%). Таким образом, они, так же как и нефелины, представляют собой комплексное сырье.

Другие сырые материалы. При производстве глинозема применяют щелочь NaOH, иногда известняк CaCO 3 , при электролизе глинозема криолит Na 3 AlF 6 (3NaF . AlF 3) и немного фтористого алюминия AlF 3 , а также CaF 2 и MgF 2 .

Впервые металлический алюминий был получен химическим путем немецким химиком Ф.Велером в 1821 г. (восстановлением из хлорида алюминия металлическим калием при нагревании). В 1854 г. французский ученый Сент-Клер Девиль предложил электрохимический способ получения алюминия, восстанавливая натрием двойной хлорид алюминия-натрия.

Производство и получение алюминия

Металлический алюминий получают в три стадии:

  • Получение глинозема (Al 2 O 3) из алюминиевых руд;
  • Получение алюминия из глинозема;
  • Рафинирование алюминия.

Получение глинозема

Около 95 % всего глинозема получают из бокситовых руд.

Боксит (фр. bauxite) (по названию местности Baux на юге Франции) – алюминиевая руда, состоящая из гидроксидов алюминия, оксидов железа и кремния, сырьё для получения глинозёма и глинозёмосодержащих огнеупоров. Содержание глинозёма в промышленных бокситах колеблется от 40 % до 60 % и выше. Используется также в качестве флюса в чёрной металлургии.

Рисунок 1 – Бокситовая руда

Обычно бокситы представляют собой землистую глиноподобную массу, которая может иметь полосчатую, пизолитовую (гороховидную) либо однородную текстуру. В обычных условиях выветривания полевые шпаты (минералы, составляющие большую часть земной коры и являющиеся алюмосиликатами) разлагаются с образованием глин, но в условиях жаркого климата и высокой влажности конечным продуктом их разложения могут оказаться бокситы, т. к. подобная обстановка благоприятствует выносу щелочей и кремнезёма, особенно из сиенитов или габбро. Бокситы перерабатывают в алюминий поэтапно: сначала получают оксид алюминия (глинозём), а затем металлический алюминий (электролитическим способом в присутствии криолита).

Основные примеси в бокситах это Fe 2 O 3 , SiO 2 , TiO 2 . К малым примесям бокситов относят: Na 2 O, K 2 O, CaO, MgO, редкоземельные элементы, Cr, P, V, F, органика.

Обычно бокситы классифицируют:

  • по цвету;
  • по основному минералу (чаще они бывают смешанными);
  • по возрасту.

Основными критериями качества алюминиевой руды являются :

  1. Кремниевый модуль (Мsi = Al 2 O 3 /SiO 2 (% масс.)). Чем больше кремниевый модуль тем лучше качество (Мsi = 7);
  2. Содержание железа в пересчете на Fe 2 O 3 . Если содержание Fe 2 O 3 около 18 % масс., то боксит считается высокожелезистым. Чем больше содержание железа труднее добыть бокситы;
  3. Содержание серы. Наличие большого количества серы усложняет переработку боксита;
  4. Содержание карбонатов в пересчете на CO 3 (2-) . Наличие большого количества карбонатов усложняет переработку боксита.

Бокситы применяют:

  • в производстве глинозема;
  • в производстве абразивных материалов;
  • в производстве огнеупорных материалов;
  • в качестве флюса для выплавки мартеновской стали;
  • для сушки газов и чистки нефти от серы;
  • в качестве красителя.

На сегодняшний день главными поставщиками боксита являются:

  • Австралия – там находятся также огромные залежи Fe, Au, U, Ni, Co, Cuи др. Выгоднее покупать сырье у Австралии, чем перерабатывать свое.
  • Гвинея – У России есть несколько купленных мест.
  • Центральная Америка: Гайана, Ямайка, Суриман.
  • Бразилия.

В Европе все месторождения истощены. Осуществляются поставки бокситов из Греции, но данное сырье является сырьем низкого качества.

Рисунок 2 – Запасы бокситов в мире

Ниже представлен основных месторождений алюминиевых руд в России.

  • Первое месторождение было открыто в 1914 г. под Сант-Петербургов, рядом с городом Тихвин. На данном месторождении было построено 6 заводов. Самый большой - это Волховский алюминиевый завод. На сегодняшний день Тихвинское месторождение истощено и работает в основном на привозном сырье.
  • В 1931 г. было открыто уникальное Северо-Уральское месторождение высококачественных бокситов (СУБР). Оно послужило базой для строительства в 1939 г. Уральского алюминиевого завода (УАЗ). А на основе Южно-уральского бокситового рудника (ЮУБР) был построен Богословский алюминиевый завод (БАЗ).
  • Североонежское месторождение находится по дороге на Кольский полуостров. В Плане есть, но дата строительства неизвестна.
  • Висловское месторождение – чистоглинистое месторождение каолитного типа. Для глинозема не используется.
  • Тиманское месторождение (Республика Коми, Варкута). Канадцы заинтересованы в данном месторождении, поэтому планируют строительство заводов ("Коми Суал" - холдинг).

Получение глинозема из бокситовых руд

Поскольку алюминий амфотерен, глинозем получают тремя способами:

  • щелочным,
  • кислотным;
  • электролитическим.

Наибольшее распространение имеет щелочной способ (метод К. И. Байера, разработанный в России в конце позапрошлого столетия и применяемый для переработки высокосортных бокситов с небольшим количеством (до 5 – 6 %) кремнезема). С тех пор техническое выполнение его было существенно улучшено. Схема производства глинозема по способу Байера представлена на рисунке 3.

Рисунок 3 – Схема получения глинозема по способу Байера

Сущность способа состоит в том, что алюминиевые растворы быстро разлагаются при введении в них гидроокиси алюминия, а оставшийся от разложения раствор после его выпаривания в условиях интенсивного перемешивания при 169 – 170 °С может вновь растворять глинозем, содержащийся в бокситах. Этот способ состоит из следующих основных операций:

1. Подготовки боксита, заключающийся в его дроблении и измельчении в мельницах; в мельницы подают боксит, едкую щелочь и небольшое количество извести, которое улучшает выделение Al 2 O 3 ; полученную пульпу подают на выщелачивание;

2. Выщелачивания боксита (в последнее время применяемые до сих пор блоки автоклав круглой формы частично заменены трубчатыми автоклавами, в которых при температурах 230 – 250 °С (500 – 520 К) происходит выщелачивание), заключающегося в химическом его разложении от взаимодействия с водным раствором щелочи; гидраты окиси алюминия при взаимодействии со щелочью переходят в раствор в виде алюмината натрия:

AlOOH+NaOH→NaAlO 2 +H 2 O

Al(OH) 3 +NaOH→NaAlO 2 +2H 2 O;

SiO 2 +2NaOH→Na 2 SiO 3 +H2O;

в растворе алюминат натрия и силикат натрия образуют нерастворимый натриевый алюмосиликат; в нерастворимый остаток переходят окислы титана и железа, предающие остатку красный цвет; этот остаток называют красным шламом. По окончании растворения полученный алюминат натрия разбавляют водным раствором щелочи при одновременном понижении температуры на 100 °С;

3. Отделения алюминатного раствора от красного шлама обычно осуществляемого путем промывки в специальных сгустителях; в результате этого красный шлам оседает, а алюминатный раствор сливают и затем фильтруют (осветляют). В ограниченных количествах шлам находит применение, например, как добавка к цементу. В зависимости от сорта бокситов на 1 т полученной окиси алюминия приходится 0,6 – 1,0 т красного шлама (сухого остатка);

4. Разложения алюминатного раствора. Его фильтруют и перекачивают в большие емкости с мешалками (декомпозеры). Из пересыщенного раствора при охлаждении на 60 °С (330 К) и постоянном перемешивании извлекается гидроокись алюминия Al(OH) 3 . Так как этот процесс протекает медленно и неравномерно, а формирование и рост кристаллов гидроокиси алюминия имеют большое значение при ее дальнейшей обработке, в декомпозеры добавляют большое количество твердой гидроокиси – затравки:

Na 2 O ·Al 2 O 3 + 4H2O→Al(OH) 3 + 2NaOH;

5. Выделения гидроокиси алюминия и ее классификации; это происходит в гидроциклонах и вакуум-фильтрах, где от алюминатного раствора выделяют осадок, содержащий 50 – 60 % частиц Al(OH) 3 . Значительную часть гидроокиси возвращают в процесс декомпозиции как затра­вочный материал, которая и остается в обороте в неизменных количествах. Оста­ток после промывки водой идет на кальцинацию; фильтрат также возвращается в оборот (после концентрации в выпарных аппаратах – для выщелачивания новых бокситов);

6. Обезвоживания гидроокиси алюминия (кальцинации); это завершающая операция производства глинозема; ее осуществляют в трубчатых вращающихся печах, а в последнее время также в печах с турбулентным движением материала при температуре 1150 – 1300 °С; сырая гидроокись алюминия, проходя через вращающуюся печь, высушивается и обезвоживается; при нагреве происходят последовательно следующие структурные превращения:

Al(OH) 3 → AlOOH → γ-Al 2 O 3 → α-Al 2 O 3

200 °C – 950 °С – 1200 °С.

В окончательно прокаленном глиноземе содержится 30 – 50 % α-Al2O3 (корунд), остальное γ-Al 2 O 2 .

Этим способом извлекается 85 – 87 % от всего получаемого глинозема. Полученная окись алюминия представляет собой прочное химическое соединение с температурой плавления 2050 ° С .

Получение алюминия электролизом

Электролитическое восстановление окиси алюминия, растворенной в расплаве на основе криолита, осуществляется при 950-970 °С в электролизере. Электролизер состоит из футерованной углеродистыми блоками ванны, к подине которой подводится электрический ток. Выделившийся на подине, служащей катодом, жидкий алюминий тяжелее расплава соли электролита, поэтому собирается на угольном основании, откуда его периодически откачивают (рисунок 4). Сверху в электролит погружены угольные аноды, которые сгорают в атмосфере выделяющегося из окиси алюминия кислорода, выделяя окись угле­рода (CO) или двуокись углерода (CO 2). На практике находят применение два типа анодов:

  • самообжигающиеся аноды Зедерберга, состоящие из брикетов, так называемых «хлебов» массы Зедерберга (малозольный уголь с 25 – 35 % каменноугольного пека), набитых в алюминиевую оболочку; под действием высокой температуры анодная масса обжигается (спекается);
  • обожженные, или «непрерывные», аноды из больших угольных блоков (например, 1900 × 600 × 500 мм массой около 1,1 т).

Рисунок 4 – Схема электролизера

Сила тока на электролизерах состав­ляет 150 000 А. Они включаются в сеть последова­тельно, т. е. получается система (серия) – длинный ряд электролизеров.

Рабочее напряжение на ванне, состав­ляющее 4 – 5 В, значительно выше на­пряжения, при кото­ром проис­ходит раз­ло­жение окиси алю­миния, поскольку в процессе рабо­ты неизбежны потери напряжения в различных частях системы. Баланс сырья и энергии при получении 1 т алюминия представлен на рисунке 5.

Рисунок 5 – Баланс сырья и энергии при получении 1 т алюминия

Вреакционном сосуде окись алюминия превращается сначала в хлорид алюминия. Затем в плотно изолированной ванне происходит электролиз AlCl 3 , растворенного в расплаве солей KCl, NaCl. Выделяющийся при этом хлор отсасывается и пода­ется для вторичного использования; алюминий осаждается на катоде.

Преимуществами данного метода перед существующим электролизом жидкого крио­литоглиноземного расплава (Al 2 O 3 , растворенная в кри­олите Na 3 AlF 6) считают: экономию до 30 % энергии; возможность применения окиси алюминия, которая не годится для традиционного электролиза (например, Al 2 O 3 с высоким содержанием кремния); замену дорогостоящего криолита более дешевыми солями; исчезновение опасности выделения фтора .

Получение рафинированного алюминия

Для алюминия рафини­рующий электролиз с разло­жением водных солевых рас­творов невозможен. Пос­кольку для некоторых целей степень очистки промыш­лен­ного алюминия (Al 99,5 – Al 99,8), полученного электролизом криолитогли­нозем­ного расплава, недостаточна, то из промышлен­ного алюминия или отходов металла путем рафинирова­ния получают еще более чистый алюминий (Al 99,99 R). На­иболее известен метод рафинирования - трехслой­ный электролиз.

Рафинирование методом трехслойного электролиза

Одетая стальным листом, работающая на постоянном токе (рисунок 6) ванна для рафиниро­вания состоит из уголь­ной подины с токопод­водами и теплоизоли­рующей магнезитовой футеровки. В проти­воположность электро­лизу криолитоглино­земного расплава ано­дом здесь служит, как правило, расплавлен­ный рафинируемый ме­талл (нижний анодный слой). Электролит сос­тавляется из чистых фторидов или смеси хлорида бария и фто­ридов алюминия и нат­рия (средний слой). Алюминий, растворяю­щийся из анодного слоя в электролите, выделяется над электролитом (верхний катодный слой). Чистый металл служит катодом. Подвод тока к катодному слою осуществляется графитовым электродом.

Рисунок 6 - Схема электролизера с передним горном для рафинирования алюминия (по Фульда - Гинзбергу)

1 – алюминиевый расплав; 2 – электролит; 3 – рафинированный алюминий высокой частоты; 4 – катод из графита; 5 – магнезитовая стена; 6 – передний горн; 7 – изолирующий слой; 8 – боковая изоляция; 9 – угольная подина; 10 – анодный токопровод; 11 – изоляция подины; 12 – железный короб; 13 – крышка

Ванна работает при 750 – 800 °С, расход электроэнергии составляет 20 кВт ч на 1 кг чистого алюминия, т. е. несколько выше, чем при обычном электролизе алюминия.

Металл анода содержит 25 – 35 % Cu; 7 – 12 % Zn; 6 – 9 % Si; до 5 % Fe и незначительное количество марганца, никеля, свинца и олова, остальное (40 – 55 %) – алюминий. Все тяжелые металлы и кремний при рафинировании остаются в анод­ном слое. Наличие магния в электролите приводит к нежелательным изменениям состава электролита или к сильному его ошлакованию. Для очистки от магния шлаки, содержащие магний, обрабатывают флюсами или газообразным хлором.

В результате рафинирования получают чистый алюминий (99,99 %) и про­дукты сегрегации (зайгер-продукт), которые содержат тяжелые металлы и крем­ний и выделяются в виде щелочного раствора и кристаллического остатка. Щелоч­ной раствор является отходом, а твердый остаток применяется для раскисления.

Рафинированный алюминий имеет обычно следующий состав, %: Fe 0,0005 – 0,002; Si 0,002 – 0,005; Cu 0,0005 – 0,002; Zn 0,0005 – 0,002; Mg следы; Al остальное.

Рафинированный алюминий перерабатывают в полуфабрикат в указанном составе или легируют магнием (таблица 1).

Таблица 1 – Химический состав алюминия повышенной чистоты и первичного алюминия по DIN 1712, лист 1

Допустимые примеси* , %

в том числе

* Насколько возможно определить обычными методами исследования.

** Чистый алюминий для электротехники (алюминиевые проводники) поставляют в виде первичного алюминий 99,5, содержащего не более 0,03 % (Ti + Cr + V + Mn); обозначается в этом случае E-A1, номер материала 3.0256. В остальном соответствует нормам VDE-0202.

Рафинирование путем алюмоорганических комплексных соединений и зонной плавкой

Алюминий степени чистоты выше марки A1 99,99 R может быть получен рафинирую­щим электролизом чистого или технически чистого алюминия с применением в качестве электролита комплексных алюмоорганических соединений алюминия. Электролиз проходит при температуре около 1000°С между твердыми алюминиевыми электродами и в принципе схож с рафинирующим электролизом меди. Природа электролита диктует необходимость работать без доступа воздуха и при низкой плотности тока.

Этот вид рафинирующего электролиза, применяемым сначала лишь в лабора­торном масштабе, уже осуществляется в небольшом производственном масштабе – изготовляется несколько тонн металла в год. Номинальная степень очистки полу­чаемого металла 99,999 -99,9999%. Потенциальными областями применения металла такой чистоты являются криогенная электротехника и электроника.

Возможно применение рассмотренного метода рафинирования и в гальванотехнике.

Еще более высокую чистоту – номинально до A1 99,99999 – можно получить последующей зонной плавкой металла. При переработке алюминия повышенной чистоты в полуфабрикат, лист или проволоку необходимо, учитывая низкую температуру рекристаллизации металла, принимать особые меры предосторожности. Примечательным свойством рафинированного металла является его высокая электропроводность в области криогенных температур .

Алюминий обладает массой свойств, которые делают его одним из самых используемых материалов в мире. Он широко распространен в природе, занимая среди металлов первое место. Казалось бы, и трудностей с его производством быть не должно. Но высокая химическая активность металла приводит к тому, что в чистом виде его не встретить, а производить - сложно, энергоемко и затратно.

Сырье для производства

Из какого сырья получают из всех минералов, его содержащих, дорого и нерентабельно. Добывают его из бокситов, которые содержат до 50% и залегают прямо на поверхности земли значительными массами.

Эти алюминиевые руды имеют достаточно сложный химический состав. Они содержат глиноземы в количестве 30-70% от общей массы, кремнеземы, которых может быть до 20%,окись железа в пределах от 2 до 50%, титан (до 10%).

Глиноземы, а это окись алюминия и есть, состоят из гидроокисей, корунда и каолинита.

В последнее время окиси алюминия стали получать из нефелинов, которые содержат еще и окиси натрия, калия, кремния, и алунитов.

Для производства 1 т чистого алюминия нужно около двух тонн глинозема, который, в свою очередь, получают из примерно 4,5 т боксита.

Месторождения бокситов

Запасы бокситов в мире ограничены. На всем земном шаре всего семь районов с его богатыми залежами. Это Гвинея в Африке, Бразилия, Венесуэла и Суринам в Южной Америке, Ямайка в Карибском регионе, Австралия, Индия, Китай, Греция и Турция в Средиземноморье и Россия.

В странах, где есть богатые месторождения бокситов, может быть развито и производство алюминия. Россия добывает бокситы на Урале, в Алтайском и Красноярском краях, в одном из районов Ленинградской области, нефелин - на Кольском полуострове.

Самые богатые месторождения принадлежат именно российской объединенной компании UC RUSAL. За ней идут гиганты Rio Tinto (Англия-Австралия), объединившийся с канадской Alcan и CVRD. На четвертом месте находится компания Chalco из Китая, затем американо-австралийская корпорация Alcoa, которые являются и крупными производителями алюминия.

Зарождение производства

Датский физик Эрстед выделил первым алюминий в свободном виде в 1825 году. Химическая реакция проходила с и амальгамой калия, вместо которой спустя два года немецкий химик Велер использовал металлический калий.

Калий - материал достаточно дорогой, поэтому в промышленном производстве алюминия француз Сент-Клер Девиль вместо калия в 1854 году использовал натрий, элемент значительно более дешевый, и стойкий двойной хлорид алюминия и натрия.

Русский ученый Н. Н. Бекетов смог вытеснить алюминий из расплавленного криолита магнием. В конце восьмидесятых годов того же века эту химическую реакцию использовали немцы на первом алюминиевом заводе. Во второй половине XVIII века было получено около химическими способами 20 т чистого металла. Это был очень дорогой алюминий.

Производство алюминия с помощью электролиза зародилось в 1886 году, когда одновременно были поданы практически одинаковые патентные заявки основоположниками этого способа американским ученым Холлом и французом Эру. Они предложили растворять глинозем в расплавленном криолите, а затем электролизом получать алюминий.

С этого и началась алюминие-вая промышленность, ставшая за более чем вековую историю одной из самых крупных отраслей металлургии.

Основные этапы технологии производства

В общих чертах алюминия не изменилась с момента создания.

Процесс состоит из трех стадий. На первой из алюминиевых руд, будь это бокситы или нефелины, получают глинозем - окись алюминия Al 2 O 3 .

Затем из окиси выделяют промышленный алюминий со степенью очистки 99,5 % , которой для некоторых целей бывает недостаточно.

Поэтому на последней стадии рафинируют алюминий. Производство алюминия завершается его очисткой до 99,99 %.

Получение глинозема

Существует три способа алюминия из руд:

Кислотный;

Электролитический;

Щелочной.

Последний способ - наиболее распространенный, разработанный еще в том же XVIII веке, но с тех пор неоднократно доработанный и существенно улучшенный, применяется для переработки бокситов высоких сортов. Так получают около 85 % глиноземов.

Сущность щелочного способа заключается в том, что алюминиевые растворы с большой скоростью разлагаются, когда в них вводится гидроокись алюминия. Оставшийся после реакции раствор выпаривается при высокой температуре около 170° С и опять используется для растворения глинозема;

Сначала боксит дробится и измельчается в мельницах с едкой щелочью и известью, затем в автоклавах при температурах до 250°С происходит его химическое разложение и образовывается алюминат натрия, который разбавляют щелочным раствором уже при более низкой температуре - всего 100° С. Алюминатный раствор промывается в специальных сгустителях, отделяется от шлама. Затем происходит его разложение. Через фильтры раствор перекачивают в емкости с мешалками для постоянного перемешивания состава, в который для затравки добавлена твердая гидроокись алюминия.

В гидроциклонах и вакуум-фильтрах выделяется гидроокись алюминия, часть которой возвращается в качестве затравочного материала, а часть идет на кальцинацию. Фильтрат, оставшийся после отделения гидроокиси, тоже возвращается в оборот для выщелачивания следующей партии бокситов.

Процесс кальцинации (обезвоживания) гидроокиси во происходит при температурах до 1300° С.

Для получения двух тонн окиси алюминия расходуется 8,4 кВт*ч электроэнергии.

Прочное химическое соединение, температура плавления которого 2050° С, это еще не алюминий. Производство алюминия впереди.

Электролиз окиси алюминия

Основным оборудованием для электролиза является специальная ванна, футерованная углеродистыми блоками. К ней подводят электрический ток. В ванну погружаются угольные аноды, сгорающие при выделении из окиси чистого кислорода и образующие окись и двуокись улглерода. Ванны, или электрилизеры, как их называют специалисты, включаются в электрическую цепь последовательно, образуя серию. Сила тока при этом составляет 150 тысяч ампер.

Аноды могут быть двух типов: обожженные из больших угольных блоков, масса которых может быть больше тонны и самообжигающиеся, состоящие из угольных брикетов в алюминиевой оболочке, которые спекаются в процессе электролиза под действием высоких температур.

Рабочее напряжение на ванне обычно составляет около 5 вольт. Оно учитывает и напряжение, необходимое для разложения окиси, и неизбежные потери в разветвленной сети.

Из растворенной в расплаве на основе криолита окиси алюминия который тяжелее солей электролита, оседает на угольном основании ванны. Его периодически откачивают.

Процесс производства алюминия требует больших затрат электроэнергии. Чтобы получить одну тонну алюминия из глинозема, нужно израсходовать около 13,5 тысяч кВт*ч электроэнергии постоянного тока. Поэтому еще одним условием создания крупных производственных центров является работающая рядом мощная электростанция.

Рафинация алюминия

Наиболее известный метод - это трехслойный электролиз. Он также проходит в электролизных ваннах с угольными подинами, футерованных магнезитом. Анодом в процессе служит сам расплавленный металл, который подвергается очистке. Он располагается в нижнем слое на токопроводящей подине. Чистый алюминий, который из электролита растворяется в анодном слое, понимается вверх и служит катодом. Ток к нему подводится с помощью графитового электрода.

Электролит в промежуточном слое - это фториды алюминия или чистые или с добавлением натрия и хлорида бария. Нагревается он до температуры 800°С.

При трехслойном рафинировании составляет 20 кВт*ч на один кг металла, то есть на одну тонну нужно 20 тысяч кВт*ч. Вот почему, как ни одно производство металлов, алюминий требует наличия не просто источника электроэнергии, а крупной электростанции в непосредственной близости.

В рафинированном алюминии в очень малых количествах содержатся железо, кремний, медь, цинк, титан и магний.

После рафинирования алюминий перерабатывается в товарную продукцию. Это и слитки, и проволока, и лист, и чушки.

Продукты сегрегации, полученные в результате рафинирования, частично, в виде твердого осадка, используются для раскисления, а частично отходят в виде щелочного раствора.

Абсолютно чистый алюминий получают при последующей зонной плавке металла в инертном газе или вакууме. Примечательной его характеристикой является высокая электропроводность при криогенных температурах.

Переработка вторичного сырья

Четверть общей потребности в алюминии удовлетворяется вторичной переработкой сырья. Из продуктов вторичной переработке льется фасонное литье.

Предварительно отсортированное сырье переплавляется в пороговой печи. В ней остаются металлы, имеющие более высокую температуру плавления, чем алюминий, например, никель и железо. Из расплавленного алюминия продувкой хлором или азотом удаляются различные неметаллические включения.

Более легкоплавкие металлические примеси удаляются присадками магния, цинка или ртути и вакуумированием. Магний удаляется из расплава хлором.

Заданный литейный сплав получают, введя добавки, которые определяются составом расплавленного алюминия.

Центры производства алюминия

По объемам потребления алюминия КНР занимает первое место, оставляя далеко позади находящиеся на втором месте США и обладательницу третьего места Германию.

Китай - это и страна производства алюминия, с огромным отрывом лидирующая в этой области.

В десятку лучших, кроме КНР, входят Россия, Канада, ОАЭ, Индия, США, Австралия, Норвегия, Бразилия и Бахрейн.

В России монополистом в производстве глинозема и алюминия является объединенная Она производит до 4 млн т алюминия в год и экспортирует продукцию в семьдесят стран, а присутствует на пяти континентах в семнадцати странах.

Американской компании Alcoa в России принадлежат два металлургических завода.

Крупнейший производитель алюминия в Китае - компания Chalco. В отличие от зарубежных конкурентов, все ее активы сосредоточены в родной стране.

Подразделение Hydro Aluminium норвежской компании Norsk Hydro владеет алюминиевыми заводами в Норвегии, Германии, Словакии, Канаде, и Австралии.

Австралийская BHP Billiton владеет производством алюминия в Австралии, Южной Африке и Южной Америке.

В Бахрейне находится Alba (Aluminium Bahrain B. S. C.) - едва ли не самое крупное производство. Алюминий этого производителя занимает более 2 % общего объема «крылатого» металла, выпускаемого в мире.

Итак, подводя итоги, можно сказать, что главными производителями алюминия являются международные компании, владеющие запасами бокситов. А сам исключительно энергоемкий процесс состоит из получения глинозема из алюминиевых руд, производства фтористых солей, к которым относится криолит, углеродистой анодной массы и угольных анодных, катодных, футеровочных материалов, и собственно электролитического производства чистого металла, которое является главной составляющей металлургии алюминия.

Основные алюминиевые руды: бокситы, нефелины, алуниты, каолины, из которых наибольшее значение имеют бокситы, содержащие 40-60% глинозема, остальное - оксиды железа, кремния, кальция, титана и др. примесей. В нефелинах, алунитах и каолинах содержится 20-30% глинозема (А1 2 0 3).

Алюминий получают в 2 стадии: получение глинозема (А1 2 0 3) из алюминиевых руд и получение алюминия электролизом из глинозема.

Около 95% всего глинозема получают из бокситовых руд. Боксит - алюминиевая руда,_состоящая из гидрооксидов алюминия, оксидов железа, титана и кремния.

Технология получения металлического алюминия включает в себя 4 отдельных производства (рис. 2.10).

Рис. 2.10.

В основе способа получения глинозема лежит реакция выщелачивания. При 230-250 °С происходит химическое разложение алюминиевого раствора от взаимодействия с водным раствором щелочи. Гидраты окиси алюминия при взаимодействии со щелочью переходят в раствор в виде алюмината натрия:

В растворе алюминат натрия и силикат натрия выпадают в осадок (нерастворимый натриевый алюмосиликат). В этот осадок переходят окислы титана и железа, предающие ему красный цвет. Поэтому осадок получил название - красный шлам.

При разложении (декомпозиции) полученных растворов происходит обратная реакция - гидролиз алюминатного раствора с образованием кристаллического осадка гидрооксида алюминия. Следовательно, технологический цикл по щелочи замкнут. Затраченная на выщелачивание щелочь восстанавливается при декомпозиции и возвращается в начало процесса для обработки новой порции руды.

Для проведения электролиза глинозем необходимо расплавить, но он имеет очень высокую температуру плавления - 2030 °С, поэтому глинозем растворяют в специальной среде, что позволяет снизить температуру электролиза до 950-1000 °С.

Основным компонентом этой среды служит криолит - двойная соль фторидов алюминия и натрия (NaAlF 6). Для электролиза алюминия необходимо дополнительное количество AlF 3 .

Криолит и фтористый алюминий получают из флотационного концентрата CaF 2 , получаемого при обогащении природного плавикового шпата. В основе кислотного способа получения этих веществ лежат реакции:

Угольные изделия необходимы для подвода тока к электролиту и для футеровки электролизеров. В их состав входят: анодные обожженные блоки (компоновка электродов); анодная масса (формирование непрерывных самообжигающихся анодов); катодные блоки (для футеровки подины электролизера); угольные плиты (футеровка боковых стен электролизеров).

Электролиз проводят в электролизных ваннах-электролизерах.

В ванну из углеродистого материала заливают расплав алюминия (который служит катодом) и электролит, состоящий из криолита, глинозем. Толщина слоя расплава - 250-300 мм. Анодное устройство состоит из угольного анода, погруженного в электролит. Постоянный ток силой 70-75 кА и напряжением 4-5 В подводится для электролиза и разогрева электролита до температуры 1000 °С. Глинозем в электролите диссоциируют; на катоде разряжается ион алюминия и образуется алюминий, а на аноде - ион кислорода, в результате чего электроды постепенно сгорают и заменяются новыми. Алюминий собирается на дне ванны под слоем электролита, откуда его периодически откачивают в вакуумный ковш. Полученный электролизом алюминий-сырец содержит металлические и неметаллические примеси, газы, поэтому его рафинируют продувкой хлором.

Продувку хлором ведут в вакуумном ковше. Для этого ковш со снятой крышкой помещают под колпак вытяжной вентиляции. В расплав алюминия вводят трубку, по которой подают газообразный хлор. Пузырьки хлора, всплывая, захватывают взвешенные неметаллические примеси, хлориды металлов и хлористый водород. Всплывшую пену удаляют.

После обработки хлором алюминий (из различных электролизеров) сливают в отражательные печи вместимостью до 25 т и выдерживают несколько часов. Цель этой операции - усреднение состава алюминия и дополнительная очистка металла. Далее алюминий выпускают в виде слитков массой от 15 до 1000 кг.

Для получения алюминия высокой чистоты необходимо дополнительное рафинирование по трехслойному методу.

Сущность трехслойного метода состоит в том, что в электролизере создают три слоя расплава: анод - расплав алюминия технической чистоты; катод - расплав очищенного металла; между ними располагается слой, состоящий из сплава хлористого бария с фторидами алюминия и натрия. Для разделения слоев алюминия по удельному весу нижний слой утяжеляют, добавляя в загрязненный алюминий до 40% меди (плотность расплава 3200 кг/м 3).

При рафинировании более электроположительные примеси (Fe, Si, Си) накапливаются в анодном сплаве, а более электроотрицательные (Na, Ва, Са) переходят в электролит.