Электронные измерительные приборы. Измерение силы тока при помощи амперметра

Презентация на тему: Приборы для измерения тока































1 из 15

Презентация на тему: Приборы для измерения тока

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Электроизмерительные приборы - класс устройств, применяемых для измерения различных электрических величин. Ориентирующее действие магнитного поля на контур с током используют в электроизмерительных приборах магнитно-электрической системы – амперметрах, вольтметрах и др.

№ слайда 3

Описание слайда:

Классификация электроизмерительных приборов Амперметр- для измерения силы электрического тока Вольтметр – для измерения электрического напряжения Частотомер – для измерения частоты колебаний электрического тока Омметр – для измерения Электрического сопротивления Ваттметр – для измерения мощности электрического тока Мультиметры (иначе тестеры, авометры) - комбинированные приборы Электрические счетчики – для измерения потребляемой энергии

№ слайда 4

Описание слайда:

Вольтметр – прибор для измерения напряжения на участке электрической цепи. Для уменьшения влияния включенного вольтметра на режим цепи он должен обладать большим входным сопротивлением. Классификация По принципу действия вольтметры разделяются на: электромеханические - магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические; электронные - аналоговые и цифровые По назначению: постоянного тока; переменного тока; импульсные; фазочувствительные; селективные; универсальные По конструкции и способу применения: щитовые; переносные; стационарные Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмы соответствующих типов с показывающими устройствами.

№ слайда 5

Описание слайда:

Амперметр - прибор для измерения силы тока в амперах. В электрическую цепь амперметр включается последовательно с тем участком электрической цепи, силу тока в котором измеряют; для увеличения предела измерений - с шунтом или через трансформатор. Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими. Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными - силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

№ слайда 6

Описание слайда:

Омме тр – измерительный прибор непосредственного отсчёта для определения электрических активных (омических) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах возможно использование переменного тока. Разновидности омметров: мегаомметры, гигаомметры, тераомметры, миллиомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений. Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания. Для измерения сопротивлений от сотен ом до нескольких мегаом измеритель и измеряемое сопротивление включают последовательно.

№ слайда 7

Описание слайда:

Ваттме тр – измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала. По назначению и диапазону частот ваттметры можно разделить на три категории - низкочастотные (и постоянного тока), радиочастотные и оптические. Ваттметры радиодиапазона по назначению делятся на два вида: проходящей мощности, включаемые в разрыв линии передачи, и поглощаемой мощности, подключаемые к концу линии в качестве согласованной нагрузки. В зависимости от способа функционального преобразования измерительной информации и её вывода оператору ваттметры бывают аналоговые (показывающие и самопишущие) и цифровые.

№ слайда 8

Описание слайда:

Частотомер – измерительный прибор для определения частоты периодического процесса или частот гармонических составляющих спектра сигнала. Электронно-счетные частотомеры (ЭСЧ) является наиболее распространенным видом частотомеров благодаря своей универсальности, широкому диапазону частот (от долей герца до десятков мегагерц) и высокой точности. Для повышения диапазона до сотен мегагерц - десятков гигагерц используются дополнительные блоки - делители частоты и переносчики частоты. Большинство ЭСЧ кроме частоты позволяют измерять период следования импульсов, интервалы времени между импульсами, отношения двух частот, а также могут использоваться в качестве счетчиков количества импульсов.

№ слайда 9

Описание слайда:

Мультиме тр - измерительный прибор, объединяющий в себе несколько функций. В минимальном наборе это вольтметр, амперметр и омметр. Существуют цифровые и аналоговые мультиметры. В некоторых мультиметрах доступны также функции: Прозво нка - измерение электрического сопротивленя звуковой (иногда и световой) сигнализацией низкого сопротивления цепи. Генерация тестового сигнала простейшей формы (гармонической или импульсной) - как своеобразный вариант прозвонки. Тест диодов - проверка целостности полупроводниковых диодов и нахождение их «прямого напряжения». Тест транзисторов - проверка полупроводниковых транзисторов Измерение электрической ёмкости. Измерение индуктивности. Измерение температуры, с применением внешнего датчика. Измерение частоты гармонического сигнала.

№ слайда 10

Описание слайда:

Счётчик электрической энергии (электрический счётчик) - прибор для измерения расхода электроэнергии переменного или постоянного тока. По типу подключения все счетчики разделяют на приборы прямого включения в силовую цепь и приборы трансформаторного включения, подключаемые к силовой цепи через специальные измерительные трансформаторы. По измеряемым величинам электросчетчики разделяют на однофазные (измерение переменного тока 220В, 50Гц) и трехфазные (380В, 50Гц). Все современные электронные трехфазные счетчики поддерживают однофазный учет. По конструкции: Индукционным электросчетчик, в котором магнитное поле неподвижных токопроводящих катушек влияет на подвижный элемент из проводящего материала. Электронный электросчетчик, в котором переменный ток и напряжение воздействуют на твердотельные элементы для создания на выходе импульсов, число которых пропорционально измеряемой активной энергии. . Гибридные счётчики электроэнергии - редко используемый промежуточный вариант с цифровым интерфейсом, измерительной частью индукционного или электронного типа, механическим вычислительным устройством.

№ слайда 11

Описание слайда:

Измерительный прибор магнито- электрической системы устроен следующим образом. Берут лёгкую алюминиевую рамку 2 прямоугольной формы, наматывают на неё катушку из тонкого провода. Рамку крепят на двух полуосях О и О", к которым прикреплена также стрелка прибора 4. Ось удерживается двумя тонкими спиральными пружинами 3. Силы упругости пружин, возвращающие рамку к положению равновесия в отсутствие тока, подобраны такими, чтобы были пропорциональными углу отклонения стрелки от положения равновесия. Катушку помещают между полюсами постоянного магнита М с наконечниками формы полого цилиндра. Внутри катушки располагают цилиндр 1 из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в области нахождения витков катушки (см рисунок). В результате при любом положении катушки силы, действующие на неё со стороны магнитного поля, максимальны и при неизменной силе тока постоянны. Устройства прибора магнитоэлектрической системы

№ слайда 12

Описание слайда:

В результате при любом положении катушки силы, действующие на нее со стороны магнитного поля, максимальны и при неизменной силе тока постоянны. Векторы F и –F изображают силы, действующие на катушку со стороны магнитного поля и поворачивающие ее. Катушка с током поворачивается до тех пор, пока силы упругости со стороны пружины не уравновесят силы, действующие на рамку со стороны магнитного поля. Увеличивая силу тока в рамке в 2 раза, рамка повернётся на угол, вдвое больший. Это происходит потому, что Fm~I. Силы, действующие на рамку с током прямо пропорциональны силе тока, то есть можно, проградуировав прибор, измерять силу тока в рамке. Точно так же можно прибор настроить на измерение напряжения в цепи, если проградуировать шкалу в вольтах, причём сопротивление рамки с током должно быть выбрано очень большим по сравнению с сопротивлением участка цепи, на котором измеряем напряжение.

Описание слайда:

Список литературы Мякишев, Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений / Г.Я. Мякишев, Б.Б. Буховцев. – 12-е изд. – М. : Просвящение. 2004. – с 14 - 15 Измерительное оборудование. [Электронный ресурс] – Режим доступа: – http://www.electrovymir.com.ua Электроизмерительные приборы. [Электронный ресурс] – Режим доступа: – http://ru.wikipedia.org/wiki

Измерение тока. Приборы, предназначенные для измерения тока, получили название амперметров. Приборы, рассмотренные в гл. 9, могут служить как для измерения тока, так и для измерения напряжения. При этом отличаются способы включения их в электрическую цепь и значения сопротивления измерительной цепи прибора. Амперметр включают в цепь таким образом, чтобы через него проходил весь измеряемый ток, т. е. последовательно. Сопротивление амперметра должно быть малым, чтобы в нем не происходило заметного падения напряжения.

Для измерения постоянного тока используют преимущественно амперметры магнитоэлектрической системы и реже приборы электромагнитной системы, а для измерения переменного тока частотой 50 Гц в основном применяют амперметры электромагнитной системы.

Непосредственное включение амперметра в цепь измеряемого тока не всегда возможно, так как в некоторых случаях измеряемый ток во много раз превосходит необходимый для полного отклонения подвижной системы прибора. В этихслучаях при измерении постоянного тока параллельно амперметру включают шунт, через который проходит большая часть измеряемого тока (рис. 10.1).

Согласно первому закону Кирхгофа, максимальное значение измеряемого амперметром тока при наличии шунта

где I max - максимальное значение тока в цепи; I - номинальное (предельное) значение тока амперметра в отсутствие шунта; I ш - ток, проходящий через шунт. Так как амперметр и шунт включены параллельно, то токи между шунтом и амперметром распределяются обратно пропорционально их сопротивлениям:

откуда находим сопротивления шунта:

где r A - внутреннее сопротивление амперметра; n = I max /I - коэффициент, показывающий, во сколько раз расширяются пределы измерения.

Так как то ток в цепи при заданной нагрузке

где I A - показание амперметра. Если шкалу амперметра отградуировать с учетом шунта, то можно определять значение измеряемого тока I непосредственно по показаниям прибора.

При измерении переменных токов шунты не применяют. Это объясняется тем, что распределение токов между шунтом и амперметром определяется не только их активным сопротивлением, но и реактивным сопротивлением прибора, которое зависит от частоты. Поэтому для расширения пределов измерения амперметров в цепях переменного тока используют измерительные трансформаторы тока.

Измерение напряжения. Электроизмерительные приборы, предназначенные для измерения напряжения, называются вольтметрами. Вольтметры включают параллельно участку (элементу) электрической цепи, на котором измеряют напряжение. При этом вольтметр должен иметь очень большое сопротивление по сравнению с сопротивлением элемента цепи, на котором измеряется напряжение. Это необходимо для уменьшения погрешности измерения и для того, чтобы не было изменения режима работы цепи. В самом деле, чем больше сопротивление вольтметра, тем меньший ток проходит через него и тем меньше расходуется в нем энергия, а следовательно, тем меньшее влияние оказывает включение прибора на режим работы цепи.

Для расширения пределов измерений вольтметров в цепях постоянного тока с напряжением до 1000-4500 В служат добавочные резисторы, включаемые последовательно с прибором (рис. 10.2). В цепях переменного тока напряжением свыше 1000 В для расширения пределов измерений используют измерительные трансформаторы напряжения.


При включении последовательно с вольтметром добавочного резистора сопротивление последнего определяют из следующих соображений: допустим, вольтметром с сопротивлением r V , рассчитанным на номинальное напряжение U ном , необходимо измерить напряжение U xmax , которое в n раз больше U ном . В этом случае необходимо соблюдать условие, при котором ток, проходящий через вольтметр, был бы одинаковым при обоих напряжениях, т. е.

(10.3)

и фактически измеряемое напряжение

где U V - показание вольтметра.

Шкалу вольтметров в большинстве случаев градуируют с учетом добавочного сопротивления r д . При этом вольтметр может быть выполнен на несколько пределов измерения, для чего он снабжается несколькими добавочными сопротивлениями и соответствующим переключателем шкалы на лицевой стороне прибора.

Для измерения напряжения в цепях постоянного тока применяют магнитоэлектрические вольтметры, а в цепях переменного тока - электромагнитные и электродинамические вольтметры. При измерении малых переменных напряжений используют выпрямительные и электронные милливольтметры, причем при повышенных частотах преимущественно электронные.

С какой целью может потребоваться замер силы тока? Какова для нас полезность от того, что станет известным количество заряженных частиц, протекающих через единицу сечения в единицу времени? Польза есть, и ценной этой информации велика!

При использовании только лишь амперметра можно быстро узнать правильность монтажа и избегнуть издержек на смену или починку испорченного электрооборудования. Показания амперметра подскажут: имеется ли в схеме короткое замыкание или другие утечки и неполадки. Знание тока потребления не станет лишним, при выборе того или иного предохранителя.

Постоянный ток характеризуют два основные параметра - сила тока и напряжение. Сила тока - это, просто число частиц, которые двигаются в проводнике в определенном направлении. Чем больше этих частиц, тем больше работа электрического тока.

Силу тока измеряют в амперах (необходимо знать, что микроампер - одна миллионная ампера, миллиампер - одна тысячная часть ампера).

Силу тока измеряют - амперметром. Амперметр необходимо включать в последовательно с токоприемником.

Кроме постоянного тока существует переменный ток. Переменный ток со временем меняет свои направление и амплитуду. Генераторы электроэнергии вырабатывают переменный ток. Переменный ток изменяется во времени по синусоидальному закону. Для его характеристики имеются дополнительные параметры -амплитуда и частота.

Приборы для измерения силы тока


Мультиметр это — специальный измерительное устройство, выполняющее ряд функций. В малом комплекте это: омметр, вольтметр, амперметр. Для простых задач более всего годятся миниатюрные модели мультиметров с цифровой шкалой.В современных экземплярах легкодоступны следующие функции:

  • Измерение постоянного/переменного напряжения от 400 мВ до 1000 В;
  • Измерение постоянного/переменного тока от 42 пА до 10 А;
  • Прозвонка -замер электрического сопротивления с оповещением о низком сопротивлении цепи;
  • Измерение сопротивления? испытание диодов - испытание целостности полупроводниковых диодов и установление их «прямого напряжения»;
  • Замер электрической емкости, замер электрической индуктивности, температур;
  • Замер частоты сигнала гармонического.

Замер силы постоянного тока состоит в определении его значения и полярности. Для проведения прямых замеров постоянного электротока нередко употребляются магнитоэлектрические амперметры. По сопоставлению с другими амперметрами амперметры магнитоэлектрические – гарантируют наибольшую точность измерений и обладают максимальной чувствительностью.

Спектр значений измеряемых токов для амперметров магнитоэлектрической схемы располагается в пределах от 10-7 А до 50А (при измерении токов больше 0,05А используются внутренние шунты). Для замера значительных постоянных токов(от 50А до многих килоампер) применяются килоамперметры с наружными шунтами и магнитоэлектрические амперметры. Для замеров малых токов (в пределах от 10-12А) часто применяются магнитоэлектрические гальванометры.

Замер постоянного тока с увеличенной точностью делается косвенным способом. Для этого типовой резистор подключается в цепь измеряемого тока и на нем с помощью высокоточного цифрового вольтметра или компенсатора измеряется падение напряжения. Точно так же (применяя преобразование ток-напряжение) действуют цифровые и электронные аналоговые амперметры

Методика замеров


Что бы замерить силу постоянного тока, нужно один вывод амперметра, тестера или мультиметра подключить к плюсовой клемме аккумулятора или выводу питания трансформатора, а второй вывод- к проводу, подключенному к токоприемнику. После включения режима измерения постоянного тока с запасом по верхнему максимальному пределу- совершать замеры.

Необходимо работать аккуратно, т.к. при размыкании действующей цепи появляется дуга, значение которой увеличивается совместно с силой тока.

Для того что бы замерить ток для токоприемников, подключаемых прямо в розетку или к электрокабелю от домашней электросети, измерительное устройство переключается в режим замеров переменного тока с запасом по верхнему пределу. Далее прибор включаются в разрыв фазного провода.

Профессиональные электрики используют для замера силы тока токоизмерительные клещи.Они нечасто поставляются в одном корпусе с мультиметром.

Измерять ими элементарно — подключаем и переводим в режим замера переменного тока, далее разводим находящиеся сверху усы и пропускаем вовнутрь фазный провод, после этого следим что бы они плотно легли к друг другу и выполняем замеры.

Правила безопасности


Работу с электроизмерительными инструментами можно проводить только лицам имеющим группу по электробезопасности не ниже третьей, или под контролем этих лиц.

Необходимо иметь медицинскую аптечку и уметь ею пользоваться.

Небезопасное и вредоносное действие электротока, электромагнитных полей и электрической дуги приводит к тяжелым последствиям.

Ступень опасности и вредоносного действия на человека поражающих факторов электротока, лежит в зависимости от:

  • Величины напряжения и рода тока;
  • Частоты колебаний электротока;
  • Пути прохождения электротока чрез тело пострадавшего человека;
  • Длительности воздействия электротока на организм пострадавшего человека;

При возникновении несчастных случаев с людьми, обесточивание участке электроцепи для избавления пострадавшего от поражающего действия электрического тока необходимо совершать немедленно, не дожидаясь предварительного разрешения.

Прибор амперметр служит для измерения силы пока в цепях с переменным и постоянным напряжением. Подключение происходит последовательно. Идеальный амперметр не оказывает влияния на цепь, но создать его в реальной жизни невозможно, так как любой проводник имеет внутреннее сопротивление. Такой прибор существует лишь в теории, где влияние устройства не учитывается в связи с допустимой погрешностью расчетов. Для повышения точности производимых измерений сопротивление амперметра стремятся сделать минимальным.

Отличия амперметров различных конструкций

Амперметр постоянного тока, предназначенный для измерения малых значений, может иметь в основании магнитоэлектрическую систему. Его принцип действия основан на взаимодействии катушки, через которую протекает ток и постоянного магнита. Преимуществом такой конструкции является высокая чувствительность и равномерная шкала. Недостатками магнитоэлектрической системы является невозможность работы с переменным током и сложность конструкции. Высокая цена на магниты также снижает конкурентную способность приборов такого типа. Наиболее точная фиксация показаний начинается после 2/3 шкалы. Данная система применяется и на вольтметрах.


В отличие от предыдущего прибора амперметр переменного тока в своей основе имеет электромагнитную систему. Наиболее часто такие устройства используются в сетях на 50-60 Герц. Устройство амперметра предполагает наличие одного либо двух сердечников, соединенных с стрелочным механизмом. Преимуществом конструкции является универсальность, позволяющая помимо переменного измерять и постоянный ток. Сопротивление амперметра электромагнитного типа выше, чем у других моделей, что отражается в худшую сторону на точность результата. Шкала нелинейная, поэтому показания амперметра считать затруднительно. В некоторых случаях в первой половине шкалы ставится точка, говорящая о невозможности измерить ток в данном диапазоне, сохраняя в норме погрешность.


Для уменьшения воздействия влияния внешних магнитных полей используются амперметры ферродинамического типа. Устройство характеризуется высокой точностью измерений. Это позволяет отказаться от установки в приборе дополнительных защитных экранов. В основе конструкции лежит замкнутый ферримагнитный провод. Стрелки амперметра показывает измеряемую величину на нелинейной шкале. Показания амперметра можно снять с требуемой погрешностью не во всем диапазоне измерений, а лишь начиная со значения, обозначенного точкой.


Среди стрелочных амперметров существует электродинамический тип. Особую популярность он не получил из-за высокой чувствительности к окружающим магнитным полям. Перед тем как подключить амперметр важно обеспечить защиту от внешнего воздействия. Преимуществом прибора является его универсальность. Также при хорошем магнитном экранировании прибор покажет высокую точность, поэтому электродинамические устройства используются для поверки других амперметров.

Цифровой измеритель силы тока наиболее удобен в пользовании, так как сразу показывает требуемое значение без необходимости получения данных с помощью стрелок амперметра. Часто он входит в состав мультиметра или электронного вольтамперметра. Наиболее современные приборы имеют возможность автоматически выбирать предел измерений. Прибор не чувствителен к горизонтальному либо вертикальному положению. Точность измерений зависит от дискретизации и алгоритма, заложенного для осуществления снятия показаний.


Схемы подключения

Независимо от конструкции подсоединение прибора в сеть производится исключительно последовательно, что показывает схема подключения амперметра изображенная ниже. Подключение параллельно равносильно короткому замыканию, так как внутреннее сопротивление прибора очень мало. Правильность подключения прибора обеспечивает его сохранность и отсутствие повреждений в электросхеме.

Перед тем как подключить амперметр важно учесть:

  • постоянный или переменный ток в сети;
  • соблюдается ли полярность прибора;
  • стрелка амперметра должна находиться за серединой шкалы;
  • предел измерения больше максимально возможного скачка тока в электросхеме;
  • окружающая среда соответствует рекомендуемым параметрам;
  • измерительное место находится без воздействия вибрации.


Для измерения больших токов используются шунты. Амперметр подключается к выводам резистора параллельно. Результаты измерений подлежат дальнейшей обработке для вычисления силы тока протекающей в цепи.


Для гальванического разделения силовой и контрольной цепи используют измерительные трансформаторы тока. Амперметр подключается к специальным выводам. Используется такая схема для измерения токов, превышающих предел измерений прибора.


Производить измерения на цифровом амперметре гораздо проще. на него не воздействуют вибрация, правильное положение и магнитные поля. Не столь критично отреагирует прибор и на неправильно выбранную полярность. Превышать предел измерений не рекомендуется, так как можно повредить устройство. Большинство высокотоковых выходов мультиметров не имеют защиты плавким предохранителем.


Бесконтактное измерение тока

Для осуществления измерения силы тока без разрыва схемы существует специальный вид электрических амперметров под названием токовые клещи. Принцип действия основан на измерении магнитного поля, образующегося вокруг проводника с током. Данный эффект проявляется на переменном напряжении.


Показания амперметра имеют меньшую точность по сравнению с приборами, подключаемыми последовательно. При лабораторных измерения данный способ не используется, но в бытовых целях такой вид измерений достаточно удобен. Безопасность и простота работы с токовыми клещами намного выше, чем при использовании аналоговых приборов.

Контроль тока заряда аккумуляторной батареи автомобиля

При использовании зарядного устройства существует необходимость замерять силу тока амперметром. Это позволяет контролировать процесс накопления энергии аккумулятором и избегать перезаряда с недозарядом. В результате срок службы АКБ значительно увеличивается.

После включения цепи амперметр покажет ток заряда. Точность измерений и прочие характеристики амперметра не столь важны для контроля передачи энергии. Погрешность измерения тоже не столь важна, так как следить необходимо за уменьшением показаний стрелки амперметра. Прибор, показывающий через несколько часов одно и тоже значение, говорит об полном заряде аккумулятора.

При работе множества аппаратуры возникает необходимость контроля силы тока. Стрелки амперметров или цифры на экране дискретного прибора показывают пользователю эту физическую величину. Производимые измерения необходимы как для поддержания рабочего состояния так и для сигнализации об возникновении аварийной ситуации.