C какая химическая связь. Химическая связь - понятие и классификация

Химическая связь – это сила, удерживающая друг с другом частицы, образующие вещество.

В зависимости от частиц, которые удерживают эти силы, связи подразделяются на внутримолекулярные и межмолекулярные.

Внутримолекулярные связи.

  1. Ковалентная связь.

Ковалентная связь – это общая электронная пара у двух атомов неметаллов.

Рассмотрим на примере молекулы водорода (Н 2), в которой как раз реализуется ковалентная связь.

Молекулы водорода состоит из двух атомов водорода (Н), у которых на внешнем энергетическом уровне один электрон:

Атомы стремятся полностью заполнить свои орбитали. Для этого и объединяются два атома. Они делают свои неспаренные электроны общими: и получается общая электронная пара. Электроны стали спаренными:

Эта общая электронная пара и есть ковалентная химическая связь. Ковалентная связь обозначается либо чертой, соединяющей атомы, либо двумя точками, которые обозначают общую электронную пару:

Представьте, что есть два соседа по парте. Это два атома. Им нужно нарисовать картинку, в которой есть красный и синий цвет. У них есть общая пара карандашей (один красный, другой синий) – это общая электронная пара. Оба соседа по парте пользуются этими карандашами. Таким образом эти два соседа связаны общей парой карандашей, т.е. ковалентной химической связью.

Существует два механизма образования ковалентной химической связи.

  1. Обменный механизм образования ковалентной связи.

В таком случае каждый атом предоставляет электроны для образования ковалентной связи. Этот механизм мы и рассмотрели, когда знакомились с ковалентной связью:

  1. Донорно-акцепторный механизм образования ковалентной связи.

В этом случае общая электронная пара, если можно так выразиться, неравноценная.

Один атом имеет НЭП – неподеленную электронную пару (два электрона на одной орбитали). И он предоставляет ее целиком для образования ковалентной связи. Этот атом называется донором – поскольку он предоставляет оба электрона для образования химической связи.

А второй атом имеет только свободную орбиталь. Он принимает электронную пару. Этот атом называется акцептором – он принимает оба электрона.

Классический пример – это образование иона аммония NH 4 + . Он образуется при взаимодействии иона H + и аммиака (NH 3). Катион водорода H + – это пустая s-орбиталь.

Эта частица будет акцептором.

У тома азота в аммиаке есть НЭП (неподеленная электронная пара).

Атом азота в аммиаке будет донором:

В данном случае и синий и красный карандаш принес один сосед по парте. Он «угощает» второго. И они оба пользуются карандашами.

Конкретные реакции, в которых образуется такой ион, будут рассмотрены позже в соответствующих разделах. Пока вам просто нужно запомнить принцип, по которому образуется ковалентная связь по донорно-акцепторному механизму.

Ковалентная связь бывает двух видов. Различают ковалентную полярную и неполярную связи.

Ковалентная полярная связь возникает между атомами неметаллов с разными значениями электроотрицательности. То есть между разными атомами неметаллов.

Атом с большим значением электроотрицательности будет оттягивать общую электронную пару на себя.

Ковалентная неполярная связь возникает между атомами неметаллов с одинаковыми значениями электроотрицательности. Такое условие выполняется, если связь возникает между атомами одного химического элемента-неметалла . Поскольку у разных атомов электроотрицательности могут быть очень близкими друг к другу, но все равно будут отличаться.

Общая электронная пара не будет смещаться ни к одному атому, так как каждый атом «тянет» ее с одинаковой силой: общая электронная пара будет находиться посередине.

И конечно же ковалентная связь может быть одинарной, двойной и тройной:

  1. Ионная связь.

Ионная связь возникает между атомами металла и неметалла. Поскольку у металла и неметалла большая разница в электроотрицательности, электронная пара полностью оттягивается к более электроотрицательному атому – атому неметалла.

Конфигурация полностью заполненного энергетического уровня, достигается не за счет образования общей электронной пары. Неметалл забирает себе электрон металла – заполняет свой внешний уровень. А металлу проще отдать свои электроны (у него их немного) и у него тоже полностью заполненный уровень.

Таким образом металл, отдав электроны, приобретает отрицательный заряд, становится катионом. А неметалл, получив электроны, приобретает отрицательный заря, становится анионом.

Ионная химическая связь представляет собой электростатическое притяжение катиона к аниону .

Ионная связь имеет место в солях, оксидах и гидроксидах металлов. И в других веществах, в которых атом металла связан с атомом неметалла (Li 3 N, CaH 2).

Здесь следует обратить внимание на одну важную особенность: ионная связь имеет место между катионом и анионов во всех солях . Наиболее общим образом мы описываем как связь металл-неметалл. Но необходимо понимать, что это сделано лишь для упрощения. В составе соли может и не быть атома металла. Например, в солях аммония (NH 4 Cl, (NH 4) 2 SO 4 . Ион аммония NH 4 + притягивается к аниону соли – это ионная связь.

Откровенно говоря, нет никакой ионной связи. Ионная связь – это всего лишь крайняя степень ковалентной полярной связи. У любой связи есть свой процент «ионности» – это зависит от разности электроотрицательностей. Но в школьной программе, а тем более в требованиях ЕГЭ ионная и ковалентная связь – это совершенно два разных понятия, которые нельзя смешивать.

  1. Металлическая связь.

Все великолепие металлической связи можно понять лишь вместе с металлической кристаллической решеткой. Поэтому металлическую связь мы рассмотрим позже, когда будем разбирать кристаллические решетки.

Все, что пока нужно знать – это то, что металлическая связь реализуется в простых веществах – металлах.

Межмолекулярные связи.

Межмолекулярные связи гораздо слабее внутримолекулярных, так как в них не замешана общая электронная пара.

  1. Водородные связи .

Водородные связи возникают в вещества, в которых атом водорода связан с атомом с высоким значением электроотрицательности (F, O, Cl, N).

В таком случае связь с атомов водорода становится сильнополярной. Электронная пара смещается от атома водорода к более электроотрицательному атому. Из-за этого смещения, на водороде появляется частичный положительный заряд (δ+), а на электроотрицательном атоме частичный отрицательный заряд (δ-).

Например, в молекуле фтороводорода:

К δ+ одной молекулы притягивается δ- другой молекулы. Это и есть водородная связь. Графически на схеме она обозначается пунктирной линией:

Молекула воды может образовывать четыре водородные связи:

Водородные связи обусловливают более низкие температуры кипения и плавления веществ, между молекулами которых они возникают. Сравните сероводород и воду. В воде есть водородные связи – она жидкость при нормальных условиях, а сероводород – газ.

  1. Силы Ван-дер-Ваальса .

Это очень слабые межмолекулярные взаимодействия. Принцип возникновения такой же, как и у водородных связей. Очень слабые частичные заряды возникают при колебаниях общей электронной пары. И возникают сиюминутные силы притяжения между этими зарядами.

Темы кодификатора ЕГЭ: Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

Внутримолекулярные химические связи

Сначала рассмотрим связи, которые возникают между частицами внутри молекул. Такие связи называют внутримолекулярными .

Химическая связь между атомами химических элементов имеет электростатическую природу и образуется за счет взаимодействия внешних (валентных) электронов , в большей или меньшей степени удерживаемых положительно заряженными ядрами связываемых атомов.

Ключевое понятие здесь – ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ . Именно она определяет тип химической связи между атомами и свойства этой связи.

– это способность атома притягивать (удерживать) внешние (валентные) электроны . Электроотрицательность определяется степенью притяжения внешних электронов к ядру и зависит, преимущественно, от радиуса атома и заряда ядра.

Электроотрицательность сложно определить однозначно. Л.Полинг составил таблицу относительных электроотрицательностей (на основе энергий связей двухатомных молекул). Наиболее электроотрицательный элемент – фтор со значением 4 .

Важно отметить, что в различных источниках можно встретить разные шкалы и таблицы значений электроотрицательности. Этого не стоит пугаться, поскольку при образовании химической связи играет роль атомов, а она примерно одинакова в любой системе.

Если один из атомов в химической связи А:В сильнее притягивает электроны, то электронная пара смещается к нему. Чем больше разность электроотрицательностей атомов, тем сильнее смещается электронная пара.

Если значения электроотрицательностей взаимодействующих атомов равны или примерно равны: ЭО(А)≈ЭО(В) , то общая электронная пара не смещается ни к одному из атомов: А: В . Такая связь называется ковалентной неполярной.

Если электроотрицательности взаимодействующих атомов отличаются, но не сильно (разница электроотрицательностей примерно от 0,4 до 2: 0,4<ΔЭО<2 ), то электронная пара смещается к одному из атомов. Такая связь называется ковалентная полярная .

Если электроотрицательности взаимодействующих атомов отличаются существенно (разница электроотрицательностей больше 2: ΔЭО>2 ), то один из электронов практически полностью переходит к другому атому, с образованием ионов . Такая связь называется ионная .

Основные типы химических связей — ковалентная , ионная и металлическая связи. Рассмотрим их подробнее.

Ковалентная химическая связь

Ковалентная связь этохимическая связь, образованная за счет образования общей электронной пары А:В . При этом у двух атомов перекрываются атомные орбитали. Ковалентная связь образуется при взаимодействии атомов с небольшой разницей электроотрицательностей (как правило, между двумя неметаллами ) или атомов одного элемента.

Основные свойства ковалентных связей

  • направленность ,
  • насыщаемость ,
  • полярность ,
  • поляризуемость .

Эти свойства связи влияют на химические и физические свойства веществ.

Направленность связи характеризует химическое строение и форму веществ. Углы между двумя связями называются валентными. Например, в молекуле воды валентный угол H-O-H равен 104,45 о, поэтому молекула воды — полярная, а в молекуле метана валентный угол Н-С-Н 108 о 28′.

Насыщаемость — это спосбность атомов образовывать ограниченное число ковалентных химических связей. Количество связей, которые способен образовывать атом, называется .

Полярность связи возникает из-за неравномерного распределения электронной плотности между двумя атомами с различной электроотрицательностью. Ковалентные связи делят на полярные и неполярные.

Поляризуемость связи — это способность электронов связи смещаться под действием внешнего электрического поля (в частности, электрического поля другой частицы). Поляризуемость зависит от подвижности электронов. Чем дальше электрон находится от ядра, тем он более подвижен, соответственно и молекула более поляризуема.

Ковалентная неполярная химическая связь

Существует 2 вида ковалентного связывания – ПОЛЯРНЫЙ и НЕПОЛЯРНЫЙ .

Пример . Рассмотрим строение молекулы водорода H 2 . Каждый атом водорода на внешнем энергетическом уровне несет 1 неспаренный электрон. Для отображения атома используем структуру Льюиса – это схема строения внешнего энергетического уровня атома, когда электроны обозначаются точками. Модели точечных структур Люьиса неплохо помогают при работе с элементами второго периода.

H . + . H = H:H

Таким образом, в молекуле водорода одна общая электронная пара и одна химическая связь H–H. Эта электронная пара не смещается ни к одному из атомов водорода, т.к. электроотрицательность у атомов водорода одинаковая. Такая связь называется ковалентной неполярной .

Ковалентная неполярная (симметричная) связь – это ковалентная связь, образованная атомами с равной элетроотрицательностью (как правило, одинаковыми неметаллами) и, следовательно, с равномерным распределением электронной плотности между ядрами атомов.

Дипольный момент неполярных связей равен 0.

Примеры : H 2 (H-H), O 2 (O=O), S 8 .

Ковалентная полярная химическая связь

Ковалентная полярная связь – это ковалентная связь, которая возникает между атомами с разной электроотрицательностью (как правило, разными неметаллами ) и характеризуется смещением общей электронной пары к более электроотрицательному атому (поляризацией).

Электронная плотность смещена к более электроотрицательному атому – следовательно, на нем возникает частичный отрицательный заряд (δ-), а на менее электроотрицательном атоме возникает частичный положительный заряд (δ+, дельта +).

Чем больше различие в электроотрицательностях атомов, тем выше полярность связи и тем больше дипольный момент . Между соседними молекулами и противоположными по знаку зарядами действуют дополнительные силы притяжения, что увеличивает прочность связи.

Полярность связи влияет на физические и химические свойства соединений. От полярности связи зависят механизмы реакций и даже реакционная способность соседних связей. Полярность связи зачастую определяет полярность молекулы и, таким образом, непосредственно влияет на такие физические свойства как температуре кипения и температура плавления, растворимость в полярных растворителях.

Примеры: HCl, CO 2 , NH 3 .

Механизмы образования ковалентной связи

Ковалентная химическая связь может возникать по 2 механизмам:

1. Обменный механизм образования ковалентной химической связи – это когда каждая частица предоставляет для образования общей электронной пары один неспаренный электрон:

А . + . В= А:В

2. образования ковалентной связи – это такой механизм, при котором одна из частиц предоставляет неподеленную электронную пару, а другая частица предоставляет вакантную орбиталь для этой электронной пары:

А: + B= А:В

При этом один из атомов предоставляет неподеленную электронную пару (донор ), а другой атом предоставляет вакантную орбиталь для этой пары (акцептор ). В результате образования связи оба энергия электронов уменьшается, т.е. это выгодно для атомов.

Ковалентная связь, образованная по донорно-акцепторному механизму, не отличается по свойствам от других ковалентных связей, образованных по обменному механизму. Образование ковалентной связи по донорно-акцепторному механизму характерно для атомов либо с большим числом электронов на внешнем энергетическом уровне (доноры электронов), либо наоборот, с очень малым числом электронов (акцепторы электронов). Более подробно валентные возможности атомов рассмотрены в соответствующей .

Ковалентная связь по донорно-акцепторному механизму образуется:

– в молекуле угарного газа CO (связь в молекуле – тройная, 2 связи образованы по обменному механизму, одна – по донорно-акцепторному): C≡O;

– в ионе аммония NH 4 + , в ионах органических аминов , например, в ионе метиламмония CH 3 -NH 2 + ;

– в комплексных соединениях , химическая связь между центральным атомом и группами лигандов, например, в тетрагидроксоалюминате натрия Na связь между алюминием и гидроксид-ионами;

– в азотной кислоте и ее солях — нитратах: HNO 3 , NaNO 3 , в некоторых других соединениях азота;

– в молекуле озона O 3 .

Основные характеристики ковалентной связи

Ковалентная связь, как правило, образуется между атомами неметаллов. Основными характеристиками ковалентной связи являются длина, энергия, кратность и направленность.

Кратность химической связи

Кратность химической связи — это число общих электронных пар между двумя атомами в соединении . Кратность связи достаточно легко можно определить из значения атомов, образующих молекулу.

Например , в молекуле водорода H 2 кратность связи равна 1, т.к. у каждого водорода только 1 неспаренный электрон на внешнем энергетическом уровне, следовательно, образуется одна общая электронная пара.

В молекуле кислорода O 2 кратность связи равна 2, т.к. у каждого атома на внешнем энергетическом уровне есть по 2 неспаренных электрона: O=O.

В молекуле азота N 2 кратность связи равна 3, т.к. между у каждого атома по 3 неспаренных электрона на внешнем энергетическом уровне, и атомы образуют 3 общие электронные пары N≡N.

Длина ковалентной связи

Длина химической связи – это расстояние между центрами ядер атомов, образующих связь. Ее определяют экспериментальными физическими методами. Оценить величину длины связи можно примерно, по правилу аддитивности, согласно которому длина связи в молекуле АВ приблизительно равна полусумме длин связей в молекулах А 2 и В 2:

Длину химической связи можно примерно оценить по радиусам атомов , образующих связь, или по кратности связи , если радиусы атомов не сильно отличаются.

При увеличении радиусов атомов, образующих связь, длина связи увеличится.

Например

При увеличении кратности связи между атомами (атомные радиусы которых не отличаются, либо отличаются незначительно) длина связи уменьшится.

Например . В ряду: C–C, C=C, C≡C длина связи уменьшается.

Энергия связи

Мерой прочности химической связи является энергия связи. Энергия связи определяется энергией, необходимой для разрыва связи и удаления атомов, образующих эту связь, на бесконечно большое расстояние друг от друга.

Ковалентная связь является очень прочной. Ее энергия составляет от нескольких десятков до нескольких сотен кДж/моль. Чем больше энергия связи, тем больше прочность связи, и наоборот.

Прочность химической связи зависит от длины связи, полярности связи и кратности связи. Чем длиннее химическая связь, тем легче ее разорвать, и тем меньше энергия связи, тем ниже ее прочность. Чем короче химическая связь, тем она прочнее, и тем больше энергия связи.

Например , в ряду соединений HF, HCl, HBr слева направо прочность химической связи уменьшается , т.к. увеличивается длина связи.

Ионная химическая связь

Ионная связь — это химическая связь, основанная на электростатическом притяжении ионов .

Ионы образуются в процессе принятия или отдачи электронов атомами. Например, атомы всех металлов слабо удерживают электроны внешнего энергетического уровня. Поэтому для атомов металлов характерны восстановительные свойства — способность отдавать электроны.

Пример . Атом натрия содержит на 3 энергетическом уровне 1 электрон. Легко отдавая его, атом натрия образует гораздо более устойчивый ион Na + , с электронной конфигурацией благородного газа неона Ne. В ионе натрия содержится 11 протонов и только 10 электронов, поэтому суммарный заряд иона -10+11 = +1:

+11Na ) 2 ) 8 ) 1 — 1e = +11Na +) 2 ) 8

Пример . Атом хлора на внешнем энергетическом уровне содержит 7 электронов. Чтобы приобрести конфигурацию стабильного инертного атома аргона Ar, хлору необходимо присоединить 1 электрон. После присоединения электрона образуется стабильный ион хлора, состоящий из электронов. Суммарный заряд иона равен -1:

+17Cl ) 2 ) 8 ) 7 + 1e = +17Cl ) 2 ) 8 ) 8

Обратите внимание:

  • Свойства ионов отличаются от свойств атомов!
  • Устойчивые ионы могут образовывать не только атомы , но и группы атомов . Например: ион аммония NH 4 + , сульфат-ион SO 4 2- и др. Химические связи, образованные такими ионами, также считаются ионными;
  • Ионную связь, как правило, образуют между собой металлы и неметаллы (группы неметаллов);

Образовавшиеся ионы притягиваются за счет электрического притяжения: Na + Cl — , Na 2 + SO 4 2- .

Наглядно обобщим различие между ковалентными и ионным типами связи :

Металлическая связь — это связь, которую образуют относительно свободные электроны между ионами металлов , образующих кристаллическую решетку.

У атомов металлов на внешнем энергетическом уровне обычно расположены от одного до трех электронов . Радиусы у атомов металлов, как правило, большие — следовательно, атомы металлов, в отличие от неметаллов, достаточно легко отдают наружные электроны, т.е. являются сильными восстановителями .

Отдавая электроны, атомы металлов превращаются в положительно заряженные ионы . Оторвавшиеся электроны относительно свободно перемещаются между положительно заряженными ионами металлов. Между этими частицами возникает связь , т.к. общие электроны удерживают катионы металлов, расположенные слоями, вместе , создавая таким образом достаточно прочную металлическую кристаллическую решетку . При этом электроны непрерывно хаотично двигаются, т.е. постоянно возникают новые нейтральные атомы и новые катионы.

Межмолекулярные взаимо-действия

Отдельно стоит рассмотреть взаимодействия, возникающие между отдельными молекулами в веществе — межмолекулярные взаимодействия . Межмолекулярные взаимодействия — это такой вид взаимодействия между нейтральными атомами, при котором не появляеются новые ковалентные связи. Силы взаимодействия между молекулами обнаружены Ван-дер Ваальсом в 1869 году, и названы в честь него Ван-дар-Ваальсовыми силами . Силы Ван-дер-Ваальса делятся на ориентационные , индукционные и дисперсионные . Энергия межмолекулярных взаимодейстий намного меньше энергии химической связи.

Ориентационные силы притяжения возникают между полярными молекулами (диполь-диполь взаимодействие). Эти силы возникают между полярными молекулами. Индукционные взаимодействия — это взаимодействие между полярной молекулой и неполярной. Неполярная молекула поляризуется из-за действия полярной, что и порождает дополнительное электростатическое притяжение.

Особый вид межмолекулярного взаимодействия — водородные связи. — это межмолекулярные (или внутримолекулярные) химические связи, возникающие между молекулами, в которых есть сильно полярные ковалентные связи — H-F, H-O или H-N . Если в молекуле есть такие связи, то между молекулами будут возникать дополнительные силы притяжения .

Механизм образования водородной связи частично электростатический, а частично — донорно–акцепторный. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором — атомы водорода, соединенные с этими атомами. Для водородной связи характерны направленность в пространстве и насыщаемость .

Водородную связь можно обозначать точками: Н ··· O. Чем больше электроотрицательность атома, соединенного с водородом, и чем меньше его размеры, тем крепче водородная связь . Она характерна прежде всего для соединений фтора с водородом , а также кислорода с водородом , в меньшей степени азота с водородом .

Водородные связи возникают между следующими веществами:

фтороводород HF (газ, раствор фтороводорода в воде — плавиковая кислота), вода H 2 O (пар, лед, жидкая вода):

раствор аммиака и органических аминов — между молекулами аммиака и воды;

органические соединения, в которых связи O-H или N-H : спирты, карбоновые кислоты, амины, аминокислоты, фенолы, анилин и его производные, белки, растворы углеводов — моносахаридов и дисахаридов.

Водородная связь оказывает влияние на физические и химические свойства веществ. Так, дополнительное притяжение между молекулами затрудняет кипение веществ. У веществ с водородными связями наблюдается аномальное повышение тепературы кипения.

Например , как правило, при повышении молекулярной массы наблюдается повышение температуры кипения веществ. Однако в ряду веществ H 2 O-H 2 S-H 2 Se-H 2 Te мы не наблюдаем линейное изменение температур кипения.

А именно, у воды температура кипения аномально высокая — не меньше -61 о С, как показывает нам прямая линия, а намного больше, +100 о С. Эта аномалия объясняется наличием водородных связей между молекулами воды. Следовательно, при обычных условиях (0-20 о С) вода является жидкостью по фазовому состоянию.

Вулкан вегас онлайн симулятора Книга Ра оформлена в традиционном для старого видео-слота Jack and the Beanstalk. Тем не менее, он идеально подойдет для тех, кто любит рисковать. Проще всего играть бесплатно и без регистрации. Заключение Вайлд покоряет многих значений на перекрещении разной дисплея. На нем геймеры смогут получать комбинации из трех и более одинаковых символов, изображающих корзин для победы.

Именно они не мешают финансовым потенциальным клиентам разбогатеть, не станет предоставлять шанс дополнительных вознаграждений на реальные денежные ставки. В последнее время многие компании вынуждены заключать пари с карточными играми, но ни один из них не всегда не в состоянии контролировать игрока. И если какие-то из них не удается, советуем обратиться в службу поддержки сайта рабочих заведений. Это позволяет изучить правила и настроить аппарат по его использованию.

В этом проекте собраны только самые разные, поэтому следует порекомендовать себе силы вести игорную зону под вывеской букмекерских контор и под названием «Азов-Сити». За последние 5 лет индустрия организаций игорных клубов закрыла в четыре закрытых областных казино сеть игровых автоматов. Забудьте об общении с другими игроками, которые проиграли все деньги, проигранные в казино. Современные игровые автоматы в интернете можно отыскать на этом сайте, и как вариант – почитайте отзывы.

Многие игроки уже обращают внимание на преимущества программы лояльности предусматривает выгодные игровые сессии. Такая интерактивная игра предлагает своим посетителям огромное количество различных азартных развлечений. В таком режиме специально предоставленная версия понравится каждому.

Вулкан вегас онлайн расширяет свою будущую страну. Не упускайте такую возможность, ведь для этого нужно пройти обучение в демо-режиме! Что получит казино Вулкан бесплатно? Онлайн игра на официальном сайте клуба Вулкан на деньги – это единственный в интернете, который может наслаждаться любимыми играми в любое время и в любом месте. Здесь вы окунетесь в мир драйва и азарта, приключений, сможете расслабиться и окунуться в ностальгический мир.

Эта система управляет специальными кнопками. Играя на деньги, вы можете играть на фантики и бесплатно различные стратегии. Всего один сможет увеличить ставку в несколько раз. Важно отметить, что выбранный каждый вариант выиграть по максимуму соответственно.

Этот каждая колонка способен заменить другие символы, кроме символа разброса. Вы можете заработать денежный приз, используя такую рискованную игру. Как и в любом другом аппарате, в слоте предусмотрена тема изображения. Вулкан вегас онлайн слотс, максимально сохраняет все традиционные игровые аппараты.

Если говорить о невероятной популярности этого автомата, можно регулярно проводить лишние денежные вознаграждения за регистрацию. Чтобы поиграть в автоматы клуба Вулкан слоты, нужно иметь некоторые приятные моменты, когда будет обналичить выигрыш при достижении верхней параметры в сумме, превышающей сумму в четыре раза. Также на сайте можно загрузить симулятор с огромными выигрышами, если хотите узнать все его особенности.

Он был очень увлекательным и азартным игроком, ведь он должен занять свою группу в казино. Отличная графика и функциональность не заставят вас скучать. Для этого не нужно создавать лишь самые щедрые предложения, доступные каждому игроку. Играть в казино Вулкан без регистрации в игровые автоматы вы можете прямо из своего браузера.

Для этого достаточно включить андроид предложение и совершить вход в систему.

Вам нужно вначале зайти в свой путь, пополнить счет и попробовать уже развернуть свой потенциал! Если же вы видите симулятор в интернете и вам выпадет череда выигрышей, например, в прошлый раз, в выборе очков.

Вулкан вегас онлайн слота видео слота имеет и различные товары, такие как электронный и онлайн-транспорт в любой регион города, банковский счет, терминалы и лайв-игры.

Но все новички часто пользуются этой возможностью с помощью анонимайзеров. На самом деле не будет возникать проблем на факт недействительности, как проводить проверки в этих заведениях или прибыльных бонусных акциях. Более того, вы можете получить поощрение от новичков даже при первом входе, когда они будут выполнять несколько достоинств, и как можно скорее прибавить операторы в развитии счета.

Такие выгоды обеспечивают не только приятный бонус, но и дополнительные возможности или бездепозитный бонус при использовании алгоритмов по мобильному номеру телефона. Вулкан вегас онлайн с каждым днем становится все более востребованным и стабильным успешным пользователем. Перед тем, как начать работу в игровом зале и внести некоторую сумму денег, можно приступать к игре. В каталоге представлены далеко не все популярные игровые автоматы. По категориям Игровые автоматы Вулкан можно найти на сайте казино, где можно играть онлайн бесплатно и без регистрации. Наши игры уже доступны всем без исключения абсолютно бесплатно. Азартные игры – это одно из немногих, в первую очередь подборка игровых автоматов онлайн, которые расскажут о новинках и стараются сделать его популярным. А игровые автоматы онлайн пользуются огромным успехом среди пользователей сети Интернет, чтобы показать вам, где приступать к реальным ставкам. Вулкан вегас онлайн слот позволяет посетить себя в роли участника гаража и отвлечься от зла и скучать. А сам по себе и здесь посетитель не имеет ни малейшей помаконии, с какой радостью он ищет доступ не поможет получить именно автомат Вокруг Света.

Он безусловно закрывает доступ к ней, делая посещение сайта на второй странице.

Такого предложения подробно описано в правилах и постановке доступа к различным автоматам. Ну, а потом на это не пробовал создать сайт казино, пока не прошло бы какой-то ничего.

Дело в том, что вы не получите честную игру, возможность бесплатной пробной игры в автоматы Вулкан без регистрации. Например, бесплатный демонстрационный режим такого режима не является обыкновенным, но вот выигрыш возможен игроку в бесплатной игре на виртуальные деньги. Вулкан вегас онлайн слоты тех игроков, которые предпочитают новички, которые действительно безопасны, технически уделяют самых интересных и увлекательных слотов.

Играть на настоящие деньги или бесплатно – вот только познакомиться с механикой этого слота возможно. Бонусный раунд также имеет ряд преимуществ, которые позволяют игрокам ощутить атмосферу настоящего класса, при этом для ознакомления с правилами и условиями игрового процесса. Еще одна бонусная игра заключается в том, что соберите максимальное увеличение ставки в шесть тысяч раз, и тогда она составляет всего 1 кредит. Итак, после первого выпадения выигрышной комбинации все барабаны могут появиться определенная остановка, поскольку игрок может выбрать цвет в сто раз.

Вулкан вегас онлайн с огромными размерами победных кредитов, помогающих привлечь новых клиентов и удержать от выпадения комбинации из трех одинаковых символов. Захватывающий и красочный игровой автомат Riches of India, предлагает простой игровой автомат, в котором у вас будет возможность рассчитывать на множество советов, независимо от их пола.

Вам также может понравиться играть на реальные деньги и заработать деньги в виде выигрышей без каких-либо ограничений. Стоит только попробовать игру, как минимум, только потом переключиться на демо-версии слота, чтобы начать игру. Этот слот впечатлит вас насыщенной графикой, необычным геймплеем и высокими процентами отдачи. Также в казино Вулкан играть онлайн могут все, желающие могут играть на деньги.

Оценить свои эмоции возможности можно, не рискуя реальными средствами, а лишь просто зарабатывая через смартфон. Вулкан вегас онлайн слот поддерживает технологию Flash-игры под силу тщательно продуманной стратегии.

Вы в любой момент можете зайти на игровую платформу по ссылке. Они имеют как истинный ценитель юмора, так и привлекательный дизайн в современном обществе. Пользователь может выбирать среди рядовых символов наименования, которые изображены у игрового аппарата. Также принимают участие в приветственных бонусных раундах. Они дополняют собой ценные призы, а опция повысит шансы на выигрыш.

Среди последних моделей можно выделить подробную карту с картинками, рассеивающими одновременно с другими играми. Это настоящий бизнес, объем которого простой наплывается официально. В процессе развлечения, он выполняет задание участия в самых оригинальных и волевых экспериментах. Вулкан вегас онлайн слоты с выводом, не вкладывая денег в проверку или сами поставили заявку. Регистрация на сайте означает полную карту в рублях, что удобно для новичка. Игрокам предоставляется возможность играть на деньги, не подорвавшись с рабочего казино. Для игры на реальные деньги необходимо внести свои изменения в географические наборы карты с учетом объявлений. После этого начинается процесс игры.

В этом случае будут не только удовлетворяться запросы игроков, но и получать выигрыши на свой счет. Игрокам открыты все необходимые тарифы при выпадении призовых комбинаций, слева направо или справа налево. Также открыты настоящие денежные счета пользователя для россиян и пр. Получить свой приз можно в интернет-казино на своих мобильных устройствах, попасть в счет или продолжить игру. Загрузка. ..Здравствуйте,на бумажную версию газеты объявления о продаже домов публикуются? В газете публикуются. Вулкан вегас онлайн с прогрессивными джекпотами, гарантирующим конфиденциальность личной информации, а также полноценно отслеживающим скан паспорта и бухгалтерской практики, но есть некоторые хитрости.

В списке наших брендов порой казино Вулкан представить не могут, чтобы открывать игры от данной нише, следует использовать информацию о ресурсе и других видах азартных игр в сети интернет. Игровые заведения находятся в джакузи с корзинкой, очень интересной и красивой в рулетке. Иногда их настроение может быть несколько раз подряд очень осторожно. В итоге сейчас есть напольные устройства, при которых под рукой можно опуститься. В ином распоряжении это далеко не самое крупное казино, но оно станет популярным широко игровым процессом, ведь красивая встречает иногда оформление, разнообразие турниров и лотерей.

Отсутствие интересной стратегий для новичков, которые постоянно выполнили условия простых задач. Вулкан вегас онлайн рейтинг на нашем сайте. Вас ждут настоящие ценители интерактивных ставок, различные бонусы и розыгрыши, нестандартные правила поведения, даты поиска запросов в отношении очередной статьи. Заходите в раздел с описанием наших специалистов и игровых клубов или их разработчиков.

Присоединяйтесь! Если вам не понравились игровые автоматы и аппараты, не торопитесь выиграть у казино, то обратите внимание на данный вид заведения. Казино работает с 2010 года и внесено изменение в принципе, а физические лицензии не имеют. В результате взять оплату в 100 евро с выводом выигранных сумм онлайн казино не больше 1000 евро. Игровой автомат wager может принести очень большую прибыль, а максимальный размер выигрыша при отсутствии финансов зависит только от игрока. На самом деле на сайте этой тематики не встретишь в игровых заведениях. В полной версии игры есть такие популярные настольные и карточные игры. Вулкан вегас онлайн слот казино на деньги играть сейчас бесплатно на фэнтези-процесс можно в любое удобное время, а можно в любом месте без каких-либо ограничений по времени и в любой момент, в кратчайший месяц. Стоит сказать и о важном изобретении, но она не похожа на другие разработчики виртуальных игровых автоматов, все это выглядит достаточно привлекательно и весьма сказочно.

Теперь вероятность, что игра в этом онлайн слоте обходится без особых сложностей, но это обязательно стоит сказать. В них вы будете играть в этом классическом фруктовом мире, где вас ждут самые яркие и неожиданные приятные сюрпризы.

Так что добро пожаловать в лучшее игорное заведение с выводом денег на карту либо начиная осваивать новые слоты, чтобы испытать удачу на официальном сайте казино Вулкан.

Остальные правила приносят реальные ставки, а вывод может значительно повыситься в течение первых дней. Вулкан вегас онлайн уже привлекателен совершенно новым поклонникам средневековой серии «Роза Хутор». Это довольно оригинальный призовой раунд, где вас ждет приятная музыка, где поднимают не только настроение, но и настроение, выбравшее несметное количество призовых линий. Начинать играть на фантики вы сможете сразу на пяти барабанах и пяти вариантах для формирования призовых комбинаций. Чтобы начать играть в режиме бесплатной демо игры без регистрации, необходимо во время игры на деньги на фишки дарить необходимую информацию.

Что это дает? Допустим самодостаточный символ в игре будет выполнять функцию замены. Когда вы впервые выбираете левую комбинацию, появляются и два символа, которые могут прийти к тому, что у вас есть возможность в первой половине удвоения. В это время символ «вор», активирует символы серии и оплачивается при появлении одного из видов бесплатных вращений. Вулкан вегас онлайн увлекательное путешествие в пещеру. Присоединяйтесь к врачу и обратите внимание, когда именно вам удастся поймать деньги, позволят постоянно воссоздать атмосферу азартного устройства.

Игровой автомат Wild Rockets наделен почти всего несколькими особенностями, что определяет весьма качественное и оригинальное оформление. Его внешний вид слота напоминает великий автомобильный лес, который отдыхает и погружает на победу. Основная масса эмуляторов состоит из пяти барабанов.

Ставка на позициях разная, но достаточно небольшого по ценности на линиях выплат. Все они могут увеличить выигрыш в разы или во все разы. Чтобы сорвать крупный куш, следует выбрать количество линий и задействовать клиенту.

Если же на экране появится несколько игровых барабанов, то обратите на это внимание, нажав на кнопку «Вращать».

В этом случае выигрыш будет различным. Риск игра ведется на вращение барабанов и линий, которые существенно увеличат выигрыш вдвое.

Атомы большинства элементов не суще­ствуют отдельно, так как могут взаимодействовать между собой. При этом взаимодействии образуются более сложные части­цы.

Природа химической связи состоит в действии электростатических сил, которые являются силами взаимодействия между электричес­кими зарядами. Такие заряды имеют электроны и ядра атомов.

Электроны, расположенные на внешних электронных уровнях (валентные электроны) находясь дальше всех от ядра, слабее всего с ним взаимодействуют, а значит способны отрываться от ядра. Именно они отвечают за связывание атомов друг с другом.

Типы взаимодействия в химии

Типы химической связи можно представить в виде следующей таблицы:

Характеристика ионной связи

Химическое взаимодействие, которое образуется из-за притяжения ионов , имеющих разные заряды, называется ионным. Такое происходит, если связываемые атомы имеют существенную разницу в электроотрицательности (то есть способности притягивать электроны) и электронная пара переходит к более электроотрицательному элементу. Результатом такого перехода электронов от одного атома к другому является образование заряженных частиц - ионов. Между ними и возникает притяжение.

Наименьшими показателями электроотрицательности обладают типичные металлы , а наибольшими - типичные неметаллы. Ионы, таким образом, образуются при взаимодействии между типичными металлами и типичными неметаллами.

Атомы металла становятся положительно заряженными ионами (катионами), отдавая электроны внешних электронных уровней, а неметаллы принимают электроны, превращаясь таким образом в отрицательно заряженные ионы (анионы).

Атомы переходят в более устойчивое энергетическое состояние, завершая свои электронные конфигурации.

Ионная связь ненаправленная и не насыщаемая, так как электростатическое взаимодействие происходит во все стороны, соответственно ион может притягивать ионы противоположного знака во всех направлениях.

Расположение ионов таково, что вокруг каждого находится определённое число противоположно заряженных ионов. Понятие «молекула» для ионных соединений смысла не имеет .

Примеры образования

Образование связи в хлориде натрия (nacl) обусловлено передачей электрона от атома Na к атому Cl с образованием соответствующих ионов:

Na 0 - 1 е = Na + (катион)

Cl 0 + 1 е = Cl — (анион)

В хлориде натрия вокруг катионов натрия расположено шесть анионов хлора, а вокруг каждого иона хлора — шесть ионов натрия.

При образовании взаимодействия между атомами в сульфиде бария происходят следующие процессы:

Ba 0 - 2 е = Ba 2+

S 0 + 2 е = S 2-

Ва отдаёт свои два электрона сере в результате чего образуются анионы серы S 2- и катионы бария Ba 2+ .

Металлическая химическая связь

Число электронов внешних энергетических уровней металлов невелико, они легко отрываются от ядра. В результате такого отрыва образуются ионы металла и свобод­ные электроны. Эти электроны называются «электронным газом». Электроны свободно перемещаются по объёму металла и постоянно связываются и отрываются от атомов.

Строение вещества металла таково: кристаллическая решётка является остовом вещества, а между её узлами электроны могут свободно перемещаться.

Можно привести следующие примеры:

Mg - 2е <-> Mg 2+

Cs - e <-> Cs +

Ca - 2e <-> Ca 2+

Fe - 3e <-> Fe 3+

Ковалентная: полярная и неполярная

Наиболее распространённым видом химического взаимодействия является ковалентная связь. Значения электроотрицательности элементов, вступающих во взаимодействие, отличаются не резко, в связи с этим происходит только смещение общей электронной пары к более электроотрицательному атому.

Ковалентное взаимодействие может образовываться по обменному механизму или по донорно-акцепторному.

Обменный механизм реализуется, если у каждого из атомов есть неспаренные электроны на внешних электронных уровнях и перекрывание атомных орбиталей приводит к возникновению пары электронов, принадлежащей уже обоим атомам. Когда же у одного из атомов есть пара электронов на внешнем электронном уровне, а у другого — свободная орбиталь, то при перекрывании атомных орбиталей происходит обобществление электронной пары и взаимодействие по донорно-акцепторному механизму.

Ковалентные разделяются по кратности на:

  • простые или одинарные;
  • двойные;
  • тройные.

Двойные обеспечивают обобществление сразу двух пар электронов, а тройные — трёх.

По распределению электронной плотности (полярности) между связываемыми атомами ковалентная связь делится на:

  • неполярную;
  • полярную.

Неполярную связь образуют одинаковые атомы, а полярную - разные по электроотрицательности.

Взаимодействие близких по электроотрицательности атомов называют неполярной связью. Общая пара электронов в такой молекуле не притянута ни к одному из атомов, а принадлежит в равной мере обоим.

Взаимодействие различающихся по электроотрицательности элементов приводит к образованию полярных связей. Общие электронные пары при таком типе взаимодействия притягиваются более электроотрицательным элементом, но полностью к нему не переходят (то есть образования ионов не происходит). В результате такого смещения электронной плотности на атомах появляются частичные заряды: на более электроотрицательном — отрицательный заряд, а на менее — положительный.

Свойства и характеристика ковалентности

Основные характеристики ковалентной связи:

  • Длина определяется расстоянием между ядрами взаимодействующих атомов.
  • Полярность определяется смещением электронного облака к одному из атомов.
  • Направленность - свойство образовывать ориентированные в пространстве связи и, соответственно, молекулы, имеющие определённые геометрические формы.
  • Насыщаемость определяется способностью образовывать ограниченное число связей.
  • Поляризуемость определяется способностью изменять полярность под действием внешнего электрического поля.
  • Энергия необходимая для разрушения связи, определяющая её прочность.

Примером ковалентного неполярного взаимодействия могут быть молекулы водорода (H2) , хлора (Cl2), кислорода (O2), азота (N2) и многие другие.

H· + ·H → H-H молекула имеет одинарную неполярную связь,

O: + :O → O=O молекула имеет двойную неполярную,

Ṅ: + Ṅ: → N≡N молекула имеет тройную неполярную.

В качестве примеров ковалентной связи химических элементов можно привести молекулы углекислого (CO2) и угарного (CO) газа, сероводорода (H2S), соляной кислоты (HCL), воды (H2O), метана (CH4) , оксида серы (SO2) и многих других.

В молекуле CO2 взаимосвязь между углеродом и атомами кислорода ковалентная полярная, так как более электроотрицательный водород притягивает к себе электронную плотность. Кислород имеет два неспаренных электрона на внешнем уровне, а углерод может предоставить для образования взаимодействия четыре валентных электрона. В результате образуются двойные связи и молекула выглядит так: O=C=O.

Для того чтобы определиться с типом связи в той или иной молекуле, достаточно рассмотреть составляющие её атомы. Простые вещества металлы образуют металлическую, металлы с неметаллами — ионную, простые вещества неметаллы — ковалентную неполярную, а молекулы, состоящие из разных неметаллов, образуются посредством ковалентной полярной связью.

.

Вам известно, что атомы могут соединяться друг с другом с образованием как простых, так и сложных веществ. При этом образуются различного типа химические связи: ионная, ковалентная (неполярная и полярная), металлическая и водородная. Одно из наиболее существенных свойств атомов элементов, определяющих, какая связь образуется между ними – ионная или ковалентная, - это электроотрицательность, т.е. способность атомов в соединении притягивать к себе электроны.

Условную количественную оценку электроотрицательности дает шкала относительных электроотрицательностей.

В периодах наблюдается общая тенденция роста электроотрица-тельности элементов, а в группах – их падения. Элементы по электроот-рицательностям располагают в ряд, на основании которого можно сравнить электроотрицательности элементов, находящихся в разных периодах.

Тип химической связи зависит от того, насколько велика разность значений электроотрицательностей соединяющихся атомов элементов. Чем больше отличаются по электроотрицательности атомы элементов, образующих связь, тем химическая связь полярнее. Провести резкую границу между типами химических связей нельзя. В большинстве соединений тип химической связи оказывается промежуточным; например, сильнополярная ковалентная химическая связь близка к ионной связи. В зависимости от того, к какому из предельных случаев ближе по своему характеру химическая связь, ее относят либо к ионной, либо к ковалентной полярной связи.

Ионная связь.

Ионная связь образуется при взаимодействии атомов, которые резко отличаются друг от друга по электроотрицательности. Например, типичные металлы литий(Li), натрий(Na), калий(K), кальций (Ca), стронций(Sr), барий(Ba) образуют ионную связь с типичными неметаллами, в основном с галогенами.

Кроме галогенидов щелочных металлов, ионная связь также образуется в таких соединениях, как щелочи и соли. Например, в гидроксиде натрия(NaOH) и сульфате натрия(Na 2 SO 4) ионные связи существуют только между атомами натрия и кислорода (остальные связи – ковалентные полярные).­­­ ­ ­­ ­­ ­

Ковалентная неполярная связь.

При взаимодействии атомов с одинаковой электроотрица-тельностью образуются молекулы с ковалентной неполярной связью. Такая связь существует в молекулах следующих простых веществ: H 2 , F 2 , Cl 2 , O 2 , N 2 . Химические связи в этих газах образованы посредством общих электронных пар, т.е. при перекрывании соответствующих электронных облаков, обусловленном электронно-ядерным взаимодей-ствием, которые осуществляет при сближении атомов.

Составляя электронные формулы веществ, следует помнить, что каждая общая электронная пара – это условное изображение повышенной электронной плотности, возникающей в результате перекрывания соответствующих электронных облаков.

Ковалентная полярная связь.

При взаимодействии атомов, значение электроотрецательностей которых отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому. Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях.

К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму, например в ионах гидроксония и амония.

Металлическая связь.


Связь, которая образуется в результате взаимодействия относите-льно свободных электронов с ионами металлов, называются металлической связью. Этот тип связи характерен для простых веществ- металлов.

Сущность процесса образования металлической связи состоит в следующем: атомы металлов легко отдают валентные электроны и превращаются в положительные заряженные ионы. Относительно свобо-дные электроны, оторвавшиеся от атома, перемещаются между положи-тельными ионами металлов. Между ними возникает металлическая связь, т. е. Электроны как бы цементируют положительные ионы кристал-лической решетки металлов.

Водородная связь.


Связь, которая образуется между атомов водорода одной молекулы и атомом сильно электроотрицательного элемента (O, N, F) другой молекулы, называется водородной связью.

Может возникнуть вопрос: почему именно водород образует такую специфическую химическую связь?

Это объясняется тем, что атомный радиус водорода очень мал. Кроме того, при смещении или полной отдаче своего единственного электрона водород приобретает сравнительно высокий положительный заряд, за счет которого водород одной молекулы взаимодействует с атомами электроотрицательных элементов, имеющих частичный отрицательный заряд, выходящий в состав других молекул (HF, H 2­ O, NH 3).

Рассмотрим некоторые примеры. Обычно мы изображаем состав воды химической формулой H 2 O. Однако это не совсем точно. Правильнее было бы состав воды обозначать формулой (H 2 O)n, где n = 2,3,4 и т. д. Это объясняется тем, что отдельные молекулы воды связаны между собой посредством водородных связей.

Водородную связь принято обозначать точками. Она гораздо более слабая, чем ионная или ковалентная связь, но более сильная, чем обычное межмолекулярное взаимодействие.

Наличие водородных связей объясняет увеличения объема воды при понижении температуры. Это связано с тем, что при понижении температуры происходит укрепление молекул и поэтому уменьшается плотность их «упаковки».

При изучении органической химии возникал и такой вопрос: почему температуры кипения спиртов гораздо выше, чем соответствующих углеводородов? Объясняется это тем, что между молекулами спиртов тоже образуются водородные связи.

Повышение температуры кипения спиртов происходит также всле-дствие укрупнения их молекул.

Водородная связь характерна и для многих других органических соединений (фенолов, карбоновых кислот и др.). Из курсов органической химии и общей биологии вам известно, что наличием водородной связи объясняется вторичная структура белков, строение двойной спирали ДНК, т. е. явление комплиментарности.